![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliplem | Structured version Visualization version GIF version |
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliplem | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . 2 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) | |
2 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
3 | simpr 479 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇}) | |
4 | fvres 6364 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (♯‘𝑥)) |
6 | prfi 8396 | . . . . . . . 8 ⊢ {𝐻, 𝑇} ∈ Fin | |
7 | 3 | elpwid 4310 | . . . . . . . 8 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇}) |
8 | ssfi 8341 | . . . . . . . 8 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
9 | 6, 7, 8 | sylancr 698 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
10 | hashcl 13335 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
12 | 11 | nn0red 11540 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℝ) |
13 | 5, 12 | eqeltrd 2835 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((♯ ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ) |
14 | simpr 479 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
15 | 2re 11278 | . . . . . 6 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ) |
17 | 2ne0 11301 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0) |
19 | rexdiv 29939 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2)) | |
20 | 14, 16, 18, 19 | syl3anc 1477 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2)) |
21 | hashresfn 13318 | . . . . 5 ⊢ (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
23 | pwfi 8422 | . . . . . 6 ⊢ ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin) | |
24 | 6, 23 | mpbi 220 | . . . . 5 ⊢ 𝒫 {𝐻, 𝑇} ∈ Fin |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin) |
26 | 15 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
27 | 13, 20, 22, 25, 26 | ofcfeqd2 30468 | . . 3 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)) |
28 | 2, 27 | ax-mp 5 | . 2 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) |
29 | 1, 28 | eqtr4i 2781 | 1 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1628 ∈ wcel 2135 ≠ wne 2928 Vcvv 3336 ⊆ wss 3711 𝒫 cpw 4298 {cpr 4319 〈cop 4323 ↾ cres 5264 Fn wfn 6040 ‘cfv 6045 (class class class)co 6809 Fincfn 8117 ℝcr 10123 0cc0 10124 1c1 10125 / cdiv 10872 2c2 11258 ℕ0cn0 11480 ♯chash 13307 /𝑒 cxdiv 29930 ∘𝑓/𝑐cofc 30462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-2o 7726 df-oadd 7729 df-er 7907 df-map 8021 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-card 8951 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-n0 11481 df-xnn0 11552 df-z 11566 df-uz 11876 df-xneg 12135 df-xmul 12137 df-hash 13308 df-xdiv 29931 df-ofc 30463 |
This theorem is referenced by: coinflipprob 30846 |
Copyright terms: Public domain | W3C validator |