![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coi2 | Structured version Visualization version GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 5741 | . 2 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | cnvco 5463 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
3 | relcnv 5661 | . . . . . 6 ⊢ Rel ◡𝐴 | |
4 | coi1 5812 | . . . . . 6 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
6 | 5 | cnveqi 5452 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
7 | 2, 6 | eqtr3i 2784 | . . 3 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
8 | cnvi 5695 | . . . 4 ⊢ ◡ I = I | |
9 | coeq2 5436 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
10 | coeq1 5435 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
11 | 9, 10 | sylan9eq 2814 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
12 | 8, 11 | mpan2 709 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
13 | id 22 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → ◡◡𝐴 = 𝐴) | |
14 | 7, 12, 13 | 3eqtr3a 2818 | . 2 ⊢ (◡◡𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴) |
15 | 1, 14 | sylbi 207 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 I cid 5173 ◡ccnv 5265 ∘ ccom 5270 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 |
This theorem is referenced by: relcoi2 5824 funi 6081 fcoi2 6240 |
Copyright terms: Public domain | W3C validator |