Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunexg Structured version   Visualization version   GIF version

Theorem cofunexg 7276
 Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5777 . . 3 Rel (𝐴𝐵)
2 relssdmrn 5800 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 5523 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
5 dmexg 7243 . . . . 5 (𝐵𝐶 → dom 𝐵 ∈ V)
6 ssexg 4935 . . . . 5 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴𝐵) ∈ V)
74, 5, 6sylancr 567 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
87adantl 467 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
9 rnco 5785 . . . 4 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
10 rnexg 7244 . . . . . 6 (𝐵𝐶 → ran 𝐵 ∈ V)
11 resfunexg 6622 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V)
1210, 11sylan2 572 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴 ↾ ran 𝐵) ∈ V)
13 rnexg 7244 . . . . 5 ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V)
1412, 13syl 17 . . . 4 ((Fun 𝐴𝐵𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V)
159, 14syl5eqel 2853 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
16 xpexg 7106 . . 3 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
178, 15, 16syl2anc 565 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
18 ssexg 4935 . 2 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
193, 17, 18sylancr 567 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 2144  Vcvv 3349   ⊆ wss 3721   × cxp 5247  dom cdm 5249  ran crn 5250   ↾ cres 5251   ∘ ccom 5253  Rel wrel 5254  Fun wfun 6025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039 This theorem is referenced by:  cofunex2g  7277  fin1a2lem7  9429  revco  13788  ccatco  13789  lswco  13792  isofval  16623  bcthlem4  23342  sseqval  30784  sinccvglem  31898  pfxco  41956
 Copyright terms: Public domain W3C validator