![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofunex2g | Structured version Visualization version GIF version |
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7154 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cofunexg 7172 | . . . 4 ⊢ ((Fun ◡𝐵 ∧ ◡𝐴 ∈ V) → (◡𝐵 ∘ ◡𝐴) ∈ V) | |
3 | 1, 2 | sylan2 490 | . . 3 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝐵 ∘ ◡𝐴) ∈ V) |
4 | cnvco 5340 | . . . . 5 ⊢ ◡(◡𝐵 ∘ ◡𝐴) = (◡◡𝐴 ∘ ◡◡𝐵) | |
5 | cocnvcnv2 5685 | . . . . 5 ⊢ (◡◡𝐴 ∘ ◡◡𝐵) = (◡◡𝐴 ∘ 𝐵) | |
6 | cocnvcnv1 5684 | . . . . 5 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | |
7 | 4, 5, 6 | 3eqtrri 2678 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = ◡(◡𝐵 ∘ ◡𝐴) |
8 | cnvexg 7154 | . . . 4 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → ◡(◡𝐵 ∘ ◡𝐴) ∈ V) | |
9 | 7, 8 | syl5eqel 2734 | . . 3 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → (𝐴 ∘ 𝐵) ∈ V) |
10 | 3, 9 | syl 17 | . 2 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∘ 𝐵) ∈ V) |
11 | 10 | ancoms 468 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 ◡ccnv 5142 ∘ ccom 5147 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 |
This theorem is referenced by: fsuppco 8348 |
Copyright terms: Public domain | W3C validator |