![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7234 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 Vcvv 3304 ∘ ccom 5222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 |
This theorem is referenced by: domtr 8125 enfixsn 8185 wdomtr 8596 cfcoflem 9207 axcc3 9373 axdc4uzlem 12897 hashfacen 13351 cofu1st 16665 cofu2nd 16667 cofucl 16670 fucid 16753 symgplusg 17930 gsumzaddlem 18442 evls1fval 19807 evls1val 19808 evl1fval 19815 evl1val 19816 cnfldfun 19881 cnfldfunALT 19882 znle 20007 xkococnlem 21585 xkococn 21586 symgtgp 22027 pserulm 24296 imsval 27770 eulerpartgbij 30664 derangenlem 31381 subfacp1lem5 31394 poimirlem9 33650 poimirlem15 33656 poimirlem17 33658 poimirlem20 33661 mbfresfi 33688 tendopl2 36484 erngplus2 36511 erngplus2-rN 36519 dvaplusgv 36717 dvhvaddass 36805 dvhlveclem 36816 diblss 36878 diblsmopel 36879 dicvaddcl 36898 dicvscacl 36899 cdlemn7 36911 dihordlem7 36922 dihopelvalcpre 36956 xihopellsmN 36962 dihopellsm 36963 rabren3dioph 37798 fzisoeu 39930 stirlinglem14 40724 |
Copyright terms: Public domain | W3C validator |