![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version |
Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘𝑓 − 𝐺)) = (𝐴 ∘𝑓 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 24175 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | simpl 474 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
3 | 1, 2 | sseldi 3742 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) |
4 | ssid 3765 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
5 | neg1cn 11336 | . . . . . 6 ⊢ -1 ∈ ℂ | |
6 | plyconst 24181 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
7 | 4, 5, 6 | mp2an 710 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
8 | simpr 479 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
9 | 1, 8 | sseldi 3742 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) |
10 | plymulcl 24196 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) | |
11 | 7, 9, 10 | sylancr 698 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) |
12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
13 | eqid 2760 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)) | |
14 | 12, 13 | coeadd 24226 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (𝐴 ∘𝑓 + (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)))) |
15 | 3, 11, 14 | syl2anc 696 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (𝐴 ∘𝑓 + (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)))) |
16 | coemulc 24230 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ0 × {-1}) ∘𝑓 · (coeff‘𝐺))) | |
17 | 5, 9, 16 | sylancr 698 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ0 × {-1}) ∘𝑓 · (coeff‘𝐺))) |
18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
19 | 18 | oveq2i 6825 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘𝑓 · 𝐵) = ((ℕ0 × {-1}) ∘𝑓 · (coeff‘𝐺)) |
20 | 17, 19 | syl6eqr 2812 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ0 × {-1}) ∘𝑓 · 𝐵)) |
21 | 20 | oveq2d 6830 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘𝑓 + (coeff‘((ℂ × {-1}) ∘𝑓 · 𝐺))) = (𝐴 ∘𝑓 + ((ℕ0 × {-1}) ∘𝑓 · 𝐵))) |
22 | 15, 21 | eqtrd 2794 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (𝐴 ∘𝑓 + ((ℕ0 × {-1}) ∘𝑓 · 𝐵))) |
23 | cnex 10229 | . . . . 5 ⊢ ℂ ∈ V | |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℂ ∈ V) |
25 | plyf 24173 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
26 | 25 | adantr 472 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) |
27 | plyf 24173 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
28 | 27 | adantl 473 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺:ℂ⟶ℂ) |
29 | ofnegsub 11230 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | |
30 | 24, 26, 28, 29 | syl3anc 1477 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
31 | 30 | fveq2d 6357 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (coeff‘(𝐹 ∘𝑓 − 𝐺))) |
32 | nn0ex 11510 | . . . 4 ⊢ ℕ0 ∈ V | |
33 | 32 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℕ0 ∈ V) |
34 | 12 | coef3 24207 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
35 | 34 | adantr 472 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ) |
36 | 18 | coef3 24207 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
37 | 36 | adantl 473 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ) |
38 | ofnegsub 11230 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘𝑓 + ((ℕ0 × {-1}) ∘𝑓 · 𝐵)) = (𝐴 ∘𝑓 − 𝐵)) | |
39 | 33, 35, 37, 38 | syl3anc 1477 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘𝑓 + ((ℕ0 × {-1}) ∘𝑓 · 𝐵)) = (𝐴 ∘𝑓 − 𝐵)) |
40 | 22, 31, 39 | 3eqtr3d 2802 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘𝑓 − 𝐺)) = (𝐴 ∘𝑓 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 {csn 4321 × cxp 5264 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ∘𝑓 cof 7061 ℂcc 10146 1c1 10149 + caddc 10151 · cmul 10153 − cmin 10478 -cneg 10479 ℕ0cn0 11504 Polycply 24159 coeffccoe 24161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-fz 12540 df-fzo 12680 df-fl 12807 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-rlim 14439 df-sum 14636 df-0p 23656 df-ply 24163 df-coe 24165 df-dgr 24166 |
This theorem is referenced by: dgrcolem2 24249 plydivlem4 24270 plydiveu 24272 vieta1lem2 24285 dgrsub2 38225 |
Copyright terms: Public domain | W3C validator |