![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5388 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∘ ccom 5222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-in 3687 df-ss 3694 df-br 4761 df-opab 4821 df-co 5227 |
This theorem is referenced by: coeq12i 5393 cocnvcnv2 5760 co01 5763 fcoi1 6191 dftpos2 7489 tposco 7503 canthp1 9589 cats1co 13722 isoval 16547 mvdco 17986 evlsval 19642 evl1fval1lem 19817 evl1var 19823 pf1ind 19842 imasdsf1olem 22300 hoico1 28845 hoid1i 28878 pjclem1 29284 pjclem3 29286 pjci 29289 dfpo2 31873 poimirlem9 33650 cdlemk45 36654 cononrel1 38319 trclubgNEW 38344 trclrelexplem 38422 relexpaddss 38429 cotrcltrcl 38436 cortrcltrcl 38451 corclrtrcl 38452 cotrclrcl 38453 cortrclrcl 38454 cotrclrtrcl 38455 cortrclrtrcl 38456 brco3f1o 38750 clsneibex 38819 neicvgbex 38829 subsaliuncl 40996 meadjiun 41103 |
Copyright terms: Public domain | W3C validator |