![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5435 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5435 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 591 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3760 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3760 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 281 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ⊆ wss 3716 ∘ ccom 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-in 3723 df-ss 3730 df-br 4806 df-opab 4866 df-co 5276 |
This theorem is referenced by: coeq2i 5439 coeq2d 5441 coi2 5814 relcnvtr 5817 f1eqcocnv 6721 ereq1 7921 seqf1olem2 13056 seqf1o 13057 relexpsucnnr 13985 isps 17424 pwsco2mhm 17593 gsumwmhm 17604 frmdgsum 17621 frmdup1 17623 frmdup2 17624 symgov 18031 pmtr3ncom 18116 psgnunilem1 18134 frgpuplem 18406 frgpupf 18407 frgpupval 18408 gsumval3eu 18526 gsumval3lem2 18528 kgencn2 21583 upxp 21649 uptx 21651 txcn 21652 xkococnlem 21685 xkococn 21686 cnmptk1 21707 cnmptkk 21709 xkofvcn 21710 imasdsf1olem 22400 pi1cof 23080 pi1coval 23081 elovolmr 23465 ovoliunlem3 23493 ismbf1 23613 motplusg 25658 hocsubdir 28975 hoddi 29180 lnopco0i 29194 opsqrlem1 29330 pjsdi2i 29347 pjin2i 29383 pjclem1 29385 symgfcoeu 30176 eulerpartgbij 30765 cvmliftmo 31595 cvmliftlem14 31608 cvmliftiota 31612 cvmlift2lem13 31626 cvmlift2 31627 cvmliftphtlem 31628 cvmlift3lem2 31631 cvmlift3lem6 31635 cvmlift3lem7 31636 cvmlift3lem9 31638 cvmlift3 31639 msubco 31757 ftc1anclem8 33824 upixp 33856 coideq 34353 xrneq1 34481 xrneq2 34484 trlcoat 36532 trljco 36549 tgrpov 36557 tendovalco 36574 erngmul 36615 erngmul-rN 36623 dvamulr 36821 dvavadd 36824 dvhmulr 36896 dihjatcclem4 37231 mendmulr 38279 hoiprodcl2 41294 ovnlecvr 41297 ovncvrrp 41303 ovnsubaddlem2 41310 ovncvr2 41350 opnvonmbllem1 41371 opnvonmbl 41373 ovolval4lem2 41389 ovolval5lem2 41392 ovolval5lem3 41393 ovolval5 41394 ovnovollem2 41396 rngcinv 42510 rngcinvALTV 42522 ringcinv 42561 ringcinvALTV 42585 |
Copyright terms: Public domain | W3C validator |