MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12i Structured version   Visualization version   GIF version

Theorem coeq12i 5424
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1 𝐴 = 𝐵
coeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
coeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3 𝐴 = 𝐵
21coeq1i 5420 . 2 (𝐴𝐶) = (𝐵𝐶)
3 coeq12i.2 . . 3 𝐶 = 𝐷
43coeq2i 5421 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2792 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  ccom 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-in 3728  df-ss 3735  df-br 4785  df-opab 4845  df-co 5258
This theorem is referenced by:  madetsumid  20484  mdetleib2  20611  imsval  27874  pjcmul1i  29394  cotrcltrcl  38536  brtrclfv2  38538  clsneif1o  38921
  Copyright terms: Public domain W3C validator