![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
coeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
coeq12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | coeq1d 5427 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
3 | coeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | coeq2d 5428 | . 2 ⊢ (𝜑 → (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
5 | 2, 4 | eqtrd 2782 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∘ ccom 5258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-in 3710 df-ss 3717 df-br 4793 df-opab 4853 df-co 5263 |
This theorem is referenced by: xpcoid 5825 dfac12lem1 9128 dfac12r 9131 trcleq2lem 13902 trclfvcotrg 13927 relexpaddg 13963 dfrtrcl2 13972 imasval 16344 cofuval 16714 cofu2nd 16717 cofuval2 16719 cofuass 16721 cofurid 16723 setcco 16905 estrcco 16942 funcestrcsetclem9 16960 funcsetcestrclem9 16975 isdir 17404 evl1fval 19865 znval 20056 znle2 20075 mdetfval 20565 mdetdiaglem 20577 ust0 22195 trust 22205 metustexhalf 22533 isngp 22572 ngppropd 22613 tngval 22615 tngngp2 22628 imsval 27820 opsqrlem3 29281 hmopidmch 29292 hmopidmpj 29293 pjidmco 29320 dfpjop 29321 zhmnrg 30291 istendo 36519 tendoco2 36527 tendoidcl 36528 tendococl 36531 tendoplcbv 36534 tendopl2 36536 tendoplco2 36538 tendodi1 36543 tendodi2 36544 tendo0co2 36547 tendoicl 36555 erngplus2 36563 erngplus2-rN 36571 cdlemk55u1 36724 cdlemk55u 36725 dvaplusgv 36769 dvhopvadd 36853 dvhlveclem 36868 dvhopaddN 36874 dicvaddcl 36950 dihopelvalcpre 37008 rtrclex 38395 trclubgNEW 38396 rtrclexi 38399 cnvtrcl0 38404 dfrtrcl5 38407 trcleq2lemRP 38408 csbcog 38412 trrelind 38428 trrelsuperreldg 38431 trficl 38432 trrelsuperrel2dg 38434 trclrelexplem 38474 relexpaddss 38481 dfrtrcl3 38496 clsneicnv 38874 neicvgnvo 38884 rngccoALTV 42467 funcrngcsetcALT 42478 funcringcsetcALTV2lem9 42523 ringccoALTV 42530 funcringcsetclem9ALTV 42546 |
Copyright terms: Public domain | W3C validator |