![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coeq0i | Structured version Visualization version GIF version |
Description: coeq0 5805 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
coeq0i | ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6214 | . . . . . 6 ⊢ (𝐵:𝐸⟶𝐹 → ran 𝐵 ⊆ 𝐹) | |
2 | 1 | 3ad2ant2 1129 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → ran 𝐵 ⊆ 𝐹) |
3 | sslin 3982 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) |
5 | fdm 6212 | . . . . . . 7 ⊢ (𝐴:𝐶⟶𝐷 → dom 𝐴 = 𝐶) | |
6 | 5 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → dom 𝐴 = 𝐶) |
7 | 6 | ineq1d 3956 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = (𝐶 ∩ 𝐹)) |
8 | simp3 1133 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐶 ∩ 𝐹) = ∅) | |
9 | 7, 8 | eqtrd 2794 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = ∅) |
10 | 4, 9 | sseqtrd 3782 | . . 3 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅) |
11 | ss0 4117 | . . 3 ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅) |
13 | coeq0 5805 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | |
14 | 12, 13 | sylibr 224 | 1 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 dom cdm 5266 ran crn 5267 ∘ ccom 5270 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-fn 6052 df-f 6053 |
This theorem is referenced by: diophren 37897 |
Copyright terms: Public domain | W3C validator |