MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Visualization version   GIF version

Theorem coemulhi 24229
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coemulhi.3 𝑀 = (deg‘𝐹)
coemulhi.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemulhi ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))

Proof of Theorem coemulhi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5 𝑀 = (deg‘𝐹)
2 dgrcl 24208 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2syl5eqel 2853 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
4 coemulhi.4 . . . . 5 𝑁 = (deg‘𝐺)
5 dgrcl 24208 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
64, 5syl5eqel 2853 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
7 nn0addcl 11529 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
83, 6, 7syl2an 575 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
9 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
10 coeadd.2 . . . 4 𝐵 = (coeff‘𝐺)
119, 10coemul 24227 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
128, 11mpd3an3 1572 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
136adantl 467 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
1413nn0ge0d 11555 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ≤ 𝑁)
153adantr 466 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
1615nn0red 11553 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℝ)
1713nn0red 11553 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℝ)
1816, 17addge01d 10816 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
1914, 18mpbid 222 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ≤ (𝑀 + 𝑁))
20 nn0uz 11923 . . . . . . 7 0 = (ℤ‘0)
2115, 20syl6eleq 2859 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (ℤ‘0))
228nn0zd 11681 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℤ)
23 elfz5 12540 . . . . . 6 ((𝑀 ∈ (ℤ‘0) ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2421, 22, 23syl2anc 565 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2519, 24mpbird 247 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (0...(𝑀 + 𝑁)))
2625snssd 4473 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → {𝑀} ⊆ (0...(𝑀 + 𝑁)))
27 elsni 4331 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
2827adantl 467 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → 𝑘 = 𝑀)
29 fveq2 6332 . . . . . 6 (𝑘 = 𝑀 → (𝐴𝑘) = (𝐴𝑀))
30 oveq2 6800 . . . . . . 7 (𝑘 = 𝑀 → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 + 𝑁) − 𝑀))
3130fveq2d 6336 . . . . . 6 (𝑘 = 𝑀 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = (𝐵‘((𝑀 + 𝑁) − 𝑀)))
3229, 31oveq12d 6810 . . . . 5 (𝑘 = 𝑀 → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3328, 32syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3416recnd 10269 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℂ)
3517recnd 10269 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℂ)
3634, 35pncan2d 10595 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3736fveq2d 6336 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘((𝑀 + 𝑁) − 𝑀)) = (𝐵𝑁))
3837oveq2d 6808 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) = ((𝐴𝑀) · (𝐵𝑁)))
399coef3 24207 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
4039adantr 466 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
4140, 15ffvelrnd 6503 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴𝑀) ∈ ℂ)
4210coef3 24207 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
4342adantl 467 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
4443, 13ffvelrnd 6503 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵𝑁) ∈ ℂ)
4541, 44mulcld 10261 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵𝑁)) ∈ ℂ)
4638, 45eqeltrd 2849 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4746adantr 466 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4833, 47eqeltrd 2849 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) ∈ ℂ)
49 simpl 468 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
50 eldifi 3881 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
51 elfznn0 12639 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
5250, 51syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ ℕ0)
539, 1dgrub 24209 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
54533expia 1113 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5549, 52, 54syl2an 575 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5655necon1bd 2960 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
5756imp 393 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
5857oveq1d 6807 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
5943ad2antrr 697 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
6050ad2antlr 698 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
61 fznn0sub 12579 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6260, 61syl 17 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6359, 62ffvelrnd 6503 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) ∈ ℂ)
6463mul02d 10435 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6558, 64eqtrd 2804 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6616adantr 466 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑀 ∈ ℝ)
6750adantl 467 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
6867, 51syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℕ0)
6968nn0red 11553 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℝ)
7017adantr 466 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑁 ∈ ℝ)
7166, 69, 70leadd1d 10822 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
728adantr 466 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℕ0)
7372nn0red 11553 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℝ)
7473, 69, 70lesubadd2d 10827 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
7571, 74bitr4d 271 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7675notbid 307 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑀𝑘 ↔ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7776biimpa 462 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
78 simpr 471 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7950, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
8010, 4dgrub 24209 . . . . . . . . . . 11 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0 ∧ (𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0) → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
81803expia 1113 . . . . . . . . . 10 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8278, 79, 81syl2an 575 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8382necon1bd 2960 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0))
8483imp 393 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8577, 84syldan 571 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8685oveq2d 6808 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑘) · 0))
8740ad2antrr 697 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝐴:ℕ0⟶ℂ)
8852ad2antlr 698 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝑘 ∈ ℕ0)
8987, 88ffvelrnd 6503 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐴𝑘) ∈ ℂ)
9089mul01d 10436 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · 0) = 0)
9186, 90eqtrd 2804 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
92 eldifsni 4455 . . . . . . 7 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘𝑀)
9392adantl 467 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘𝑀)
9469, 66letri3d 10380 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 = 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
9594necon3abid 2978 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘𝑀 ↔ ¬ (𝑘𝑀𝑀𝑘)))
9693, 95mpbid 222 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ¬ (𝑘𝑀𝑀𝑘))
97 ianor 910 . . . . 5 (¬ (𝑘𝑀𝑀𝑘) ↔ (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9896, 97sylib 208 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9965, 91, 98mpjaodan 939 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
100 fzfid 12979 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0...(𝑀 + 𝑁)) ∈ Fin)
10126, 48, 99, 100fsumss 14663 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
10232sumsn 14682 . . . 4 ((𝑀 ∈ ℕ0 ∧ ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
10315, 46, 102syl2anc 565 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
104103, 38eqtrd 2804 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵𝑁)))
10512, 101, 1043eqtr2d 2810 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wne 2942  cdif 3718  {csn 4314   class class class wbr 4784  wf 6027  cfv 6031  (class class class)co 6792  𝑓 cof 7041  cc 10135  cr 10136  0cc0 10137   + caddc 10140   · cmul 10142  cle 10276  cmin 10467  0cn0 11493  cz 11578  cuz 11887  ...cfz 12532  Σcsu 14623  Polycply 24159  coeffccoe 24161  degcdgr 24162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-0p 23656  df-ply 24163  df-coe 24165  df-dgr 24166
This theorem is referenced by:  dgrmul  24245  plymul0or  24255  plydivlem4  24270  vieta1lem2  24285
  Copyright terms: Public domain W3C validator