![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeidp | Structured version Visualization version GIF version |
Description: The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
coeidp | ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10207 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1nn0 11521 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | mptresid 5615 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ 𝑧) = ( I ↾ ℂ) | |
4 | exp1 13081 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (𝑧↑1) = 𝑧) | |
5 | 4 | oveq2d 6831 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (1 · (𝑧↑1)) = (1 · 𝑧)) |
6 | mulid2 10251 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (1 · 𝑧) = 𝑧) | |
7 | 5, 6 | eqtrd 2795 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (1 · (𝑧↑1)) = 𝑧) |
8 | 7 | mpteq2ia 4893 | . . . 4 ⊢ (𝑧 ∈ ℂ ↦ (1 · (𝑧↑1))) = (𝑧 ∈ ℂ ↦ 𝑧) |
9 | df-idp 24165 | . . . 4 ⊢ Xp = ( I ↾ ℂ) | |
10 | 3, 8, 9 | 3eqtr4ri 2794 | . . 3 ⊢ Xp = (𝑧 ∈ ℂ ↦ (1 · (𝑧↑1))) |
11 | 10 | coe1term 24235 | . 2 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
12 | 1, 2, 11 | mp3an12 1563 | 1 ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ifcif 4231 ↦ cmpt 4882 I cid 5174 ↾ cres 5269 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 0cc0 10149 1c1 10150 · cmul 10154 ℕ0cn0 11505 ↑cexp 13075 Xpcidp 24161 coeffccoe 24162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-fl 12808 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-rlim 14440 df-sum 14637 df-0p 23657 df-ply 24164 df-idp 24165 df-coe 24166 df-dgr 24167 |
This theorem is referenced by: vieta1lem2 24286 plymulx0 30955 |
Copyright terms: Public domain | W3C validator |