![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeid | Structured version Visualization version GIF version |
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
coeid | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply2 24172 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))))) | |
2 | 1 | simprbi 483 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) |
3 | dgrub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
5 | simpll 807 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 ∈ (Poly‘𝑆)) | |
6 | simplrl 819 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑛 ∈ ℕ0) | |
7 | simplrr 820 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
8 | simprl 811 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) | |
9 | simprr 813 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) | |
10 | fveq2 6354 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑎‘𝑚) = (𝑎‘𝑘)) | |
11 | oveq2 6823 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → (𝑥↑𝑚) = (𝑥↑𝑘)) | |
12 | 10, 11 | oveq12d 6833 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → ((𝑎‘𝑚) · (𝑥↑𝑚)) = ((𝑎‘𝑘) · (𝑥↑𝑘))) |
13 | 12 | cbvsumv 14646 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) |
14 | oveq1 6822 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑥↑𝑘) = (𝑧↑𝑘)) | |
15 | 14 | oveq2d 6831 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
16 | 15 | sumeq2sdv 14655 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
17 | 13, 16 | syl5eq 2807 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
18 | 17 | cbvmptv 4903 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
19 | 9, 18 | syl6eq 2811 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
20 | 3, 4, 5, 6, 7, 8, 19 | coeidlem 24213 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
21 | 20 | ex 449 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
22 | 21 | rexlimdvva 3177 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑛)((𝑎‘𝑚) · (𝑥↑𝑚)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
23 | 2, 22 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∃wrex 3052 ∪ cun 3714 ⊆ wss 3716 {csn 4322 ↦ cmpt 4882 “ cima 5270 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 ℂcc 10147 0cc0 10149 1c1 10150 + caddc 10152 · cmul 10154 ℕ0cn0 11505 ℤ≥cuz 11900 ...cfz 12540 ↑cexp 13075 Σcsu 14636 Polycply 24160 coeffccoe 24162 degcdgr 24163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-fl 12808 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-rlim 14440 df-sum 14637 df-0p 23657 df-ply 24164 df-coe 24166 df-dgr 24167 |
This theorem is referenced by: coeid2 24215 plyco 24217 0dgrb 24222 coeaddlem 24225 coemullem 24226 coe11 24229 plycn 24237 plycjlem 24252 |
Copyright terms: Public domain | W3C validator |