MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Structured version   Visualization version   GIF version

Theorem coefv0 24124
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coefv0 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))

Proof of Theorem coefv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0cn 10145 . . 3 0 ∈ ℂ
2 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
3 eqid 2724 . . . 4 (deg‘𝐹) = (deg‘𝐹)
42, 3coeid2 24115 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
51, 4mpan2 709 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
6 dgrcl 24109 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
7 nn0uz 11836 . . . . 5 0 = (ℤ‘0)
86, 7syl6eleq 2813 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ (ℤ‘0))
9 fzss2 12495 . . . 4 ((deg‘𝐹) ∈ (ℤ‘0) → (0...0) ⊆ (0...(deg‘𝐹)))
108, 9syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆ (0...(deg‘𝐹)))
11 elfz1eq 12466 . . . . . 6 (𝑘 ∈ (0...0) → 𝑘 = 0)
12 fveq2 6304 . . . . . . 7 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
13 oveq2 6773 . . . . . . . 8 (𝑘 = 0 → (0↑𝑘) = (0↑0))
14 0exp0e1 12980 . . . . . . . 8 (0↑0) = 1
1513, 14syl6eq 2774 . . . . . . 7 (𝑘 = 0 → (0↑𝑘) = 1)
1612, 15oveq12d 6783 . . . . . 6 (𝑘 = 0 → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
1711, 16syl 17 . . . . 5 (𝑘 ∈ (0...0) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
182coef3 24108 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
19 0nn0 11420 . . . . . . 7 0 ∈ ℕ0
20 ffvelrn 6472 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℂ)
2118, 19, 20sylancl 697 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ)
2221mulid1d 10170 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0))
2317, 22sylan9eqr 2780 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
2421adantr 472 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ)
2523, 24eqeltrd 2803 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) ∈ ℂ)
26 eldifn 3841 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
27 eldifi 3840 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹)))
28 elfznn0 12547 . . . . . . . . . . . 12 (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ0)
30 elnn0 11407 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3129, 30sylib 208 . . . . . . . . . 10 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3231ord 391 . . . . . . . . 9 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
33 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
34 0z 11501 . . . . . . . . . . 11 0 ∈ ℤ
35 elfz3 12465 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ (0...0))
3634, 35ax-mp 5 . . . . . . . . . 10 0 ∈ (0...0)
3733, 36syl6eqel 2811 . . . . . . . . 9 (𝑘 = 0 → 𝑘 ∈ (0...0))
3832, 37syl6 35 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ (0...0)))
3926, 38mt3d 140 . . . . . . 7 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ)
4039adantl 473 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈ ℕ)
41400expd 13139 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0)
4241oveq2d 6781 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
43 ffvelrn 6472 . . . . . 6 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4418, 29, 43syl2an 495 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴𝑘) ∈ ℂ)
4544mul01d 10348 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · 0) = 0)
4642, 45eqtrd 2758 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = 0)
47 fzfid 12887 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin)
4810, 25, 46, 47fsumss 14576 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
4922, 21eqeltrd 2803 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈ ℂ)
5016fsum1 14596 . . . 4 ((0 ∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5134, 49, 50sylancr 698 . . 3 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5251, 22eqtrd 2758 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
535, 48, 523eqtr2d 2764 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1596  wcel 2103  cdif 3677  wss 3680  wf 5997  cfv 6001  (class class class)co 6765  cc 10047  0cc0 10049  1c1 10050   · cmul 10054  cn 11133  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  cexp 12975  Σcsu 14536  Polycply 24060  coeffccoe 24062  degcdgr 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-fl 12708  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-rlim 14340  df-sum 14537  df-0p 23557  df-ply 24064  df-coe 24066  df-dgr 24067
This theorem is referenced by:  coemulc  24131  dgreq0  24141  vieta1lem2  24186  aareccl  24201  ftalem5  24923  signsply0  30858  elaa2  40871
  Copyright terms: Public domain W3C validator