MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeaddlem Structured version   Visualization version   GIF version

Theorem coeaddlem 24204
Description: Lemma for coeadd 24206 and dgradd 24222. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coeaddlem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 + 𝐺)) = (𝐴𝑓 + 𝐵) ∧ (deg‘(𝐹𝑓 + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem coeaddlem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyaddcl 24175 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) ∈ (Poly‘ℂ))
2 coeadd.4 . . . . . 6 𝑁 = (deg‘𝐺)
3 dgrcl 24188 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
42, 3syl5eqel 2843 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
54adantl 473 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
6 coeadd.3 . . . . . 6 𝑀 = (deg‘𝐹)
7 dgrcl 24188 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
86, 7syl5eqel 2843 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98adantr 472 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
105, 9ifcld 4275 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
11 addcl 10210 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1211adantl 473 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
13 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
1413coef3 24187 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1514adantr 472 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
16 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1716coef3 24187 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
1817adantl 473 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
19 nn0ex 11490 . . . . 5 0 ∈ V
2019a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 3965 . . . 4 (ℕ0 ∩ ℕ0) = ℕ0
2212, 15, 18, 20, 20, 21off 7077 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴𝑓 + 𝐵):ℕ0⟶ℂ)
23 oveq12 6822 . . . . . . . . . 10 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = (0 + 0))
24 00id 10403 . . . . . . . . . 10 (0 + 0) = 0
2523, 24syl6eq 2810 . . . . . . . . 9 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = 0)
26 ffn 6206 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
2715, 26syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴 Fn ℕ0)
28 ffn 6206 . . . . . . . . . . . 12 (𝐵:ℕ0⟶ℂ → 𝐵 Fn ℕ0)
2918, 28syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵 Fn ℕ0)
30 eqidd 2761 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
31 eqidd 2761 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3227, 29, 20, 20, 21, 30, 31ofval 7071 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑓 + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3332eqeq1d 2762 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) = 0 ↔ ((𝐴𝑘) + (𝐵𝑘)) = 0))
3425, 33syl5ibr 236 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑓 + 𝐵)‘𝑘) = 0))
3534necon3ad 2945 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0)))
36 neorian 3026 . . . . . . 7 (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) ↔ ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0))
3735, 36syl6ibr 242 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → ((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0)))
3813, 6dgrub2 24190 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
3938adantr 472 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
40 plyco0 24147 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
419, 15, 40syl2anc 696 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
4239, 41mpbid 222 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
4342r19.21bi 3070 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
449adantr 472 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4544nn0red 11544 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℝ)
465adantr 472 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4746nn0red 11544 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
48 max1 12209 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4945, 47, 48syl2anc 696 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
50 nn0re 11493 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
5150adantl 473 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
5210adantr 472 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
5352nn0red 11544 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
54 letr 10323 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5551, 45, 53, 54syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5649, 55mpan2d 712 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑀𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5743, 56syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5816, 2dgrub2 24190 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
5958adantl 473 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
60 plyco0 24147 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
615, 18, 60syl2anc 696 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
6259, 61mpbid 222 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
6362r19.21bi 3070 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
64 max2 12211 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6545, 47, 64syl2anc 696 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
66 letr 10323 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6751, 47, 53, 66syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6865, 67mpan2d 712 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑁𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6963, 68syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7057, 69jaod 394 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7137, 70syld 47 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7271ralrimiva 3104 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
73 plyco0 24147 . . . . 5 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0 ∧ (𝐴𝑓 + 𝐵):ℕ0⟶ℂ) → (((𝐴𝑓 + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7410, 22, 73syl2anc 696 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝐴𝑓 + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴𝑓 + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7572, 74mpbird 247 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑓 + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0})
76 simpl 474 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
77 simpr 479 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7813, 6coeid 24193 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7978adantr 472 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
8016, 2coeid 24193 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
8180adantl 473 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
8276, 77, 9, 5, 15, 18, 39, 59, 79, 81plyaddlem1 24168 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
831, 10, 22, 75, 82coeeq 24182 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹𝑓 + 𝐺)) = (𝐴𝑓 + 𝐵))
84 elfznn0 12626 . . . 4 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
85 ffvelrn 6520 . . . 4 (((𝐴𝑓 + 𝐵):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑓 + 𝐵)‘𝑘) ∈ ℂ)
8622, 84, 85syl2an 495 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴𝑓 + 𝐵)‘𝑘) ∈ ℂ)
871, 10, 86, 82dgrle 24198 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
8883, 87jca 555 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 + 𝐺)) = (𝐴𝑓 + 𝐵) ∧ (deg‘(𝐹𝑓 + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  ifcif 4230  {csn 4321   class class class wbr 4804  cmpt 4881  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  𝑓 cof 7060  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cle 10267  0cn0 11484  cuz 11879  ...cfz 12519  cexp 13054  Σcsu 14615  Polycply 24139  coeffccoe 24141  degcdgr 24142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-sum 14616  df-0p 23636  df-ply 24143  df-coe 24145  df-dgr 24146
This theorem is referenced by:  coeadd  24206  dgradd  24222
  Copyright terms: Public domain W3C validator