![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1z | Structured version Visualization version GIF version |
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
coe1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1z.z | ⊢ 0 = (0g‘𝑃) |
coe1z.y | ⊢ 𝑌 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1z | ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6132 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → (1𝑜 × {𝑎}):1𝑜⟶ℕ0) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1𝑜 × {𝑎}):1𝑜⟶ℕ0) |
3 | nn0ex 11336 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 1on 7612 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
5 | 4 | elexi 3244 | . . . . 5 ⊢ 1𝑜 ∈ V |
6 | 3, 5 | elmap 7928 | . . . 4 ⊢ ((1𝑜 × {𝑎}) ∈ (ℕ0 ↑𝑚 1𝑜) ↔ (1𝑜 × {𝑎}):1𝑜⟶ℕ0) |
7 | 2, 6 | sylibr 224 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1𝑜 × {𝑎}) ∈ (ℕ0 ↑𝑚 1𝑜)) |
8 | eqidd 2652 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) | |
9 | eqid 2651 | . . . . 5 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
10 | psr1baslem 19603 | . . . . 5 ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑐 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑐 “ ℕ) ∈ Fin} | |
11 | coe1z.y | . . . . 5 ⊢ 𝑌 = (0g‘𝑅) | |
12 | coe1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
13 | coe1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
14 | 9, 12, 13 | ply1mpl0 19673 | . . . . 5 ⊢ 0 = (0g‘(1𝑜 mPoly 𝑅)) |
15 | 4 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1𝑜 ∈ On) |
16 | ringgrp 18598 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 9, 10, 11, 14, 15, 16 | mpl0 19489 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 = ((ℕ0 ↑𝑚 1𝑜) × {𝑌})) |
18 | fconstmpt 5197 | . . . 4 ⊢ ((ℕ0 ↑𝑚 1𝑜) × {𝑌}) = (𝑏 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ 𝑌) | |
19 | 17, 18 | syl6eq 2701 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ 𝑌)) |
20 | eqidd 2652 | . . 3 ⊢ (𝑏 = (1𝑜 × {𝑎}) → 𝑌 = 𝑌) | |
21 | 7, 8, 19, 20 | fmptco 6436 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
22 | 12 | ply1ring 19666 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
23 | eqid 2651 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
24 | 23, 13 | ring0cl 18615 | . . 3 ⊢ (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃)) |
25 | eqid 2651 | . . . 4 ⊢ (coe1‘ 0 ) = (coe1‘ 0 ) | |
26 | eqid 2651 | . . . 4 ⊢ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})) | |
27 | 25, 23, 12, 26 | coe1fval2 19628 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
28 | 22, 24, 27 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
29 | fconstmpt 5197 | . . 3 ⊢ (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
31 | 21, 28, 30 | 3eqtr4d 2695 | 1 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {csn 4210 ↦ cmpt 4762 × cxp 5141 ∘ ccom 5147 Oncon0 5761 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 ↑𝑚 cmap 7899 ℕ0cn0 11330 Basecbs 15904 0gc0g 16147 Ringcrg 18593 mPoly cmpl 19401 Poly1cpl1 19595 coe1cco1 19596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-tset 16007 df-ple 16008 df-0g 16149 df-gsum 16150 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-subrg 18826 df-psr 19404 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-ply1 19600 df-coe1 19601 |
This theorem is referenced by: coe1fzgsumd 19720 decpmatid 20623 pmatcollpwscmatlem1 20642 fta1blem 23973 hbtlem2 38011 |
Copyright terms: Public domain | W3C validator |