![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1tmmul2fv | Structured version Visualization version GIF version |
Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
coe1tm.z | ⊢ 0 = (0g‘𝑅) |
coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
coe1tm.e | ⊢ ↑ = (.g‘𝑁) |
coe1tmmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1tmmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1tmmul.u | ⊢ × = (.r‘𝑅) |
coe1tmmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
coe1tmmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
coe1tmmul.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
coe1tmmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
coe1tmmul2fv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
Ref | Expression |
---|---|
coe1tmmul2fv | ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
8 | coe1tmmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1tmmul.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1tmmul.u | . . . 4 ⊢ × = (.r‘𝑅) | |
11 | coe1tmmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
12 | coe1tmmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | coe1tmmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
14 | coe1tmmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | coe1tmmul2 19861 | . . 3 ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) |
16 | 15 | fveq1d 6334 | . 2 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌))) |
17 | coe1tmmul2fv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
18 | 14, 17 | nn0addcld 11557 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
19 | breq2 4790 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
20 | fvoveq1 6816 | . . . . . . 7 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
21 | 20 | oveq1d 6808 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
22 | 19, 21 | ifbieq1d 4248 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
23 | eqid 2771 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) | |
24 | ovex 6823 | . . . . . 6 ⊢ (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) ∈ V | |
25 | fvex 6342 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
26 | 1, 25 | eqeltri 2846 | . . . . . 6 ⊢ 0 ∈ V |
27 | 24, 26 | ifex 4295 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) ∈ V |
28 | 22, 23, 27 | fvmpt 6424 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
29 | 18, 28 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
30 | 14 | nn0red 11554 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
31 | nn0addge1 11541 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
32 | 30, 17, 31 | syl2anc 573 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
33 | 32 | iftrued 4233 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
34 | 14 | nn0cnd 11555 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
35 | 17 | nn0cnd 11555 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
36 | 34, 35 | pncan2d 10596 | . . . . 5 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
37 | 36 | fveq2d 6336 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
38 | 37 | oveq1d 6808 | . . 3 ⊢ (𝜑 → (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
39 | 29, 33, 38 | 3eqtrd 2809 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
40 | 16, 39 | eqtrd 2805 | 1 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ifcif 4225 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 + caddc 10141 ≤ cle 10277 − cmin 10468 ℕ0cn0 11494 Basecbs 16064 .rcmulr 16150 ·𝑠 cvsca 16153 0gc0g 16308 .gcmg 17748 mulGrpcmgp 18697 Ringcrg 18755 var1cv1 19761 Poly1cpl1 19762 coe1cco1 19763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-ofr 7045 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-ple 16169 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-subrg 18988 df-lmod 19075 df-lss 19143 df-psr 19571 df-mvr 19572 df-mpl 19573 df-opsr 19575 df-psr1 19765 df-vr1 19766 df-ply1 19767 df-coe1 19768 |
This theorem is referenced by: ply1divex 24116 |
Copyright terms: Public domain | W3C validator |