MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul2 Structured version   Visualization version   GIF version

Theorem coe1tmmul2 19694
Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
3 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
4 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
5 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
6 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
7 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
8 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
9 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
10 coe1tm.e . . . . 5 = (.g𝑁)
11 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
125, 6, 7, 8, 9, 10, 11ply1tmcl 19690 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
131, 3, 4, 12syl3anc 1366 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
166, 14, 15, 11coe1mul 19688 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵 ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵) → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
171, 2, 13, 16syl3anc 1366 . 2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
18 eqeq2 2662 . . . 4 ((((coe1𝐴)‘(𝑥𝐷)) × 𝐶) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
19 eqeq2 2662 . . . 4 ( 0 = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
20 coe1tm.z . . . . . . 7 0 = (0g𝑅)
211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Ring)
22 ringmnd 18602 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Mnd)
24 ovex 6718 . . . . . . . 8 (0...𝑥) ∈ V
2524a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0...𝑥) ∈ V)
26 simprr 811 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷𝑥)
274adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℕ0)
28 simprl 809 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℕ0)
29 nn0sub 11381 . . . . . . . . . 10 ((𝐷 ∈ ℕ0𝑥 ∈ ℕ0) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3027, 28, 29syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3126, 30mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ ℕ0)
3227nn0ge0d 11392 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 0 ≤ 𝐷)
33 nn0re 11339 . . . . . . . . . . 11 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3433ad2antrl 764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℝ)
354nn0red 11390 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℝ)
3734, 36subge02d 10657 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0 ≤ 𝐷 ↔ (𝑥𝐷) ≤ 𝑥))
3832, 37mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ≤ 𝑥)
39 fznn0 12470 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4039ad2antrl 764 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4131, 38, 40mpbir2and 977 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ (0...𝑥))
421ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
43 eqid 2651 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
4443, 11, 6, 5coe1f 19629 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
452, 44syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4645ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1𝐴):ℕ0𝐾)
47 elfznn0 12471 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
4847adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
4946, 48ffvelrnd 6400 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
50 eqid 2651 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
5150, 11, 6, 5coe1f 19629 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5213, 51syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5352ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
54 fznn0sub 12411 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
5554adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥𝑦) ∈ ℕ0)
5653, 55ffvelrnd 6400 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾)
575, 15ringcl 18607 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾 ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5842, 49, 56, 57syl3anc 1366 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
59 eqid 2651 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))
6058, 59fmptd 6425 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
611ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝑅 ∈ Ring)
623ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐶𝐾)
634ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ∈ ℕ0)
64 eldifi 3765 . . . . . . . . . . . . 13 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → 𝑦 ∈ (0...𝑥))
6564, 54syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → (𝑥𝑦) ∈ ℕ0)
6665adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (𝑥𝑦) ∈ ℕ0)
67 eldifsn 4350 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) ↔ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷)))
68 simplrl 817 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℕ0)
6968nn0cnd 11391 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℂ)
7047nn0cnd 11391 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℂ)
7170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℂ)
7269, 71nncand 10435 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥 − (𝑥𝑦)) = 𝑦)
7372eqcomd 2657 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 = (𝑥 − (𝑥𝑦)))
74 oveq2 6698 . . . . . . . . . . . . . . . 16 (𝐷 = (𝑥𝑦) → (𝑥𝐷) = (𝑥 − (𝑥𝑦)))
7574eqeq2d 2661 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥𝑦) → (𝑦 = (𝑥𝐷) ↔ 𝑦 = (𝑥 − (𝑥𝑦))))
7673, 75syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = (𝑥𝑦) → 𝑦 = (𝑥𝐷)))
7776necon3d 2844 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑦 ≠ (𝑥𝐷) → 𝐷 ≠ (𝑥𝑦)))
7877impr 648 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷))) → 𝐷 ≠ (𝑥𝑦))
7967, 78sylan2b 491 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ≠ (𝑥𝑦))
8020, 5, 6, 7, 8, 9, 10, 61, 62, 63, 66, 79coe1tmfv2 19693 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
8180oveq2d 6706 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
825, 15, 20ringrz 18634 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8342, 49, 82syl2anc 694 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8464, 83sylan2 490 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8581, 84eqtrd 2685 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
8685, 25suppss2 7374 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) supp 0 ) ⊆ {(𝑥𝐷)})
875, 20, 23, 25, 41, 60, 86gsumpt 18407 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)))
88 fveq2 6229 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1𝐴)‘𝑦) = ((coe1𝐴)‘(𝑥𝐷)))
89 oveq2 6698 . . . . . . . . . 10 (𝑦 = (𝑥𝐷) → (𝑥𝑦) = (𝑥 − (𝑥𝐷)))
9089fveq2d 6233 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))))
9188, 90oveq12d 6708 . . . . . . . 8 (𝑦 = (𝑥𝐷) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
92 ovex 6718 . . . . . . . 8 (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) ∈ V
9391, 59, 92fvmpt 6321 . . . . . . 7 ((𝑥𝐷) ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9441, 93syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9528nn0cnd 11391 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℂ)
9627nn0cnd 11391 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℂ)
9795, 96nncand 10435 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥 − (𝑥𝐷)) = 𝐷)
9897fveq2d 6233 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
993adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐶𝐾)
10020, 5, 6, 7, 8, 9, 10coe1tmfv1 19692 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10121, 99, 27, 100syl3anc 1366 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10298, 101eqtrd 2685 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = 𝐶)
103102oveq2d 6706 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
10487, 94, 1033eqtrd 2689 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
105104anassrs 681 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
1061ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑅 ∈ Ring)
1073ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐶𝐾)
1084ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℕ0)
10954ad2antll 765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℕ0)
11054nn0red 11390 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℝ)
111110ad2antll 765 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℝ)
11233ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 ∈ ℝ)
11335ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℝ)
11447ad2antll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℕ0)
115114nn0ge0d 11392 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 0 ≤ 𝑦)
11647nn0red 11390 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℝ)
117116ad2antll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℝ)
118112, 117subge02d 10657 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (0 ≤ 𝑦 ↔ (𝑥𝑦) ≤ 𝑥))
119115, 118mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ≤ 𝑥)
120 simprl 809 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ¬ 𝐷𝑥)
121112, 113ltnled 10222 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥 < 𝐷 ↔ ¬ 𝐷𝑥))
122120, 121mpbird 247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 < 𝐷)
123111, 112, 113, 119, 122lelttrd 10233 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) < 𝐷)
124111, 123gtned 10210 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ≠ (𝑥𝑦))
12520, 5, 6, 7, 8, 9, 10, 106, 107, 108, 109, 124coe1tmfv2 19693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
126125oveq2d 6706 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
12745ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (coe1𝐴):ℕ0𝐾)
128127, 114ffvelrnd 6400 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
129106, 128, 82syl2anc 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
130126, 129eqtrd 2685 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
131130anassrs 681 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
132131mpteq2dva 4777 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
133132oveq2d 6706 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
1341, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
13520gsumz 17421 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
136134, 24, 135sylancl 695 . . . . . 6 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
137136ad2antrr 762 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
138133, 137eqtrd 2685 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 )
13918, 19, 105, 138ifbothda 4156 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ))
140139mpteq2dva 4777 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
14117, 140eqtrd 2685 1 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   < clt 10112  cle 10113  cmin 10304  0cn0 11330  ...cfz 12364  Basecbs 15904  .rcmulr 15989   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  .gcmg 17587  mulGrpcmgp 18535  Ringcrg 18593  var1cv1 19594  Poly1cpl1 19595  coe1cco1 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-coe1 19601
This theorem is referenced by:  coe1tmmul2fv  19696  coe1sclmul2  19702
  Copyright terms: Public domain W3C validator