Step | Hyp | Ref
| Expression |
1 | | coe1tm.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
2 | | coe1tm.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | coe1tm.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
4 | | coe1tm.m |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
5 | | coe1tm.n |
. . . 4
⊢ 𝑁 = (mulGrp‘𝑃) |
6 | | coe1tm.e |
. . . 4
⊢ ↑ =
(.g‘𝑁) |
7 | | eqid 2651 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
8 | 1, 2, 3, 4, 5, 6, 7 | ply1tmcl 19690 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃)) |
9 | | eqid 2651 |
. . . 4
⊢
(coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) |
10 | | eqid 2651 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (1𝑜 × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1𝑜 × {𝑥})) |
11 | 9, 7, 2, 10 | coe1fval2 19628 |
. . 3
⊢ ((𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1𝑜 × {𝑥})))) |
12 | 8, 11 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1𝑜 × {𝑥})))) |
13 | | fconst6g 6132 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
→ (1𝑜 × {𝑥}):1𝑜⟶ℕ0) |
14 | | nn0ex 11336 |
. . . . . 6
⊢
ℕ0 ∈ V |
15 | | 1on 7612 |
. . . . . . 7
⊢
1𝑜 ∈ On |
16 | 15 | elexi 3244 |
. . . . . 6
⊢
1𝑜 ∈ V |
17 | 14, 16 | elmap 7928 |
. . . . 5
⊢
((1𝑜 × {𝑥}) ∈ (ℕ0
↑𝑚 1𝑜) ↔ (1𝑜
× {𝑥}):1𝑜⟶ℕ0) |
18 | 13, 17 | sylibr 224 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ (1𝑜 × {𝑥}) ∈ (ℕ0
↑𝑚 1𝑜)) |
19 | 18 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (1𝑜 × {𝑥}) ∈ (ℕ0
↑𝑚 1𝑜)) |
20 | | eqidd 2652 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ (1𝑜 × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1𝑜 × {𝑥}))) |
21 | | eqid 2651 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘(1𝑜 mPoly 𝑅))) =
(.g‘(mulGrp‘(1𝑜 mPoly 𝑅))) |
22 | 5, 7 | mgpbas 18541 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑁) |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘𝑁)) |
24 | | eqid 2651 |
. . . . . . . . . 10
⊢
(mulGrp‘(1𝑜 mPoly 𝑅)) = (mulGrp‘(1𝑜
mPoly 𝑅)) |
25 | | eqid 2651 |
. . . . . . . . . . 11
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
26 | 2, 25, 7 | ply1bas 19613 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘(1𝑜 mPoly 𝑅)) |
27 | 24, 26 | mgpbas 18541 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘(1𝑜 mPoly 𝑅))) |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘(mulGrp‘(1𝑜 mPoly 𝑅)))) |
29 | | ssv 3658 |
. . . . . . . . 9
⊢
(Base‘𝑃)
⊆ V |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) ⊆
V) |
31 | | ovexd 6720 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) ∈ V) |
32 | | eqid 2651 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘𝑃) |
33 | 5, 32 | mgpplusg 18539 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (+g‘𝑁) |
34 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢
(1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) |
35 | 2, 34, 32 | ply1mulr 19645 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) =
(.r‘(1𝑜 mPoly 𝑅)) |
36 | 24, 35 | mgpplusg 18539 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1𝑜 mPoly 𝑅))) |
37 | 33, 36 | eqtr3i 2675 |
. . . . . . . . . 10
⊢
(+g‘𝑁) =
(+g‘(mulGrp‘(1𝑜 mPoly 𝑅))) |
38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(+g‘𝑁) =
(+g‘(mulGrp‘(1𝑜 mPoly 𝑅)))) |
39 | 38 | oveqdr 6714 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1𝑜
mPoly 𝑅)))𝑦)) |
40 | 6, 21, 23, 28, 30, 31, 39 | mulgpropd 17631 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ↑ =
(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))) |
41 | 40 | 3ad2ant1 1102 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ↑ =
(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))) |
42 | | eqidd 2652 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 = 𝐷) |
43 | 3 | vr1val 19610 |
. . . . . . 7
⊢ 𝑋 = ((1𝑜 mVar
𝑅)‘∅) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑋 = ((1𝑜 mVar
𝑅)‘∅)) |
45 | 41, 42, 44 | oveq123d 6711 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) = (𝐷(.g‘(mulGrp‘(1𝑜
mPoly 𝑅)))((1𝑜 mVar
𝑅)‘∅))) |
46 | 45 | oveq2d 6706 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1𝑜
mPoly 𝑅)))((1𝑜 mVar
𝑅)‘∅)))) |
47 | | psr1baslem 19603 |
. . . . . 6
⊢
(ℕ0 ↑𝑚 1𝑜) =
{𝑎 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
(◡𝑎 “ ℕ) ∈
Fin} |
48 | | coe1tm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
49 | | eqid 2651 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
50 | 15 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
1𝑜 ∈ On) |
51 | | eqid 2651 |
. . . . . 6
⊢
(1𝑜 mVar 𝑅) = (1𝑜 mVar 𝑅) |
52 | | simp1 1081 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑅 ∈ Ring) |
53 | | 0lt1o 7629 |
. . . . . . 7
⊢ ∅
∈ 1𝑜 |
54 | 53 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ∅
∈ 1𝑜) |
55 | | simp3 1083 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 ∈
ℕ0) |
56 | 34, 47, 48, 49, 50, 24, 21, 51, 52, 54, 55 | mplcoe3 19514 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0
↑𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)),
(1r‘𝑅),
0 )) =
(𝐷(.g‘(mulGrp‘(1𝑜
mPoly 𝑅)))((1𝑜 mVar
𝑅)‘∅))) |
57 | 56 | oveq2d 6706 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)),
(1r‘𝑅),
0 ))) =
(𝐶 · (𝐷(.g‘(mulGrp‘(1𝑜
mPoly 𝑅)))((1𝑜 mVar
𝑅)‘∅)))) |
58 | 2, 34, 4 | ply1vsca 19644 |
. . . . 5
⊢ · = (
·𝑠 ‘(1𝑜 mPoly 𝑅)) |
59 | | elsni 4227 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {∅} → 𝑏 = ∅) |
60 | | df1o2 7617 |
. . . . . . . . . . 11
⊢
1𝑜 = {∅} |
61 | 59, 60 | eleq2s 2748 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 1𝑜
→ 𝑏 =
∅) |
62 | 61 | iftrued 4127 |
. . . . . . . . 9
⊢ (𝑏 ∈ 1𝑜
→ if(𝑏 = ∅,
𝐷, 0) = 𝐷) |
63 | 62 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1𝑜)
→ if(𝑏 = ∅,
𝐷, 0) = 𝐷) |
64 | 63 | mpteq2dva 4777 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜
↦ if(𝑏 = ∅,
𝐷, 0)) = (𝑏 ∈ 1𝑜
↦ 𝐷)) |
65 | | fconstmpt 5197 |
. . . . . . 7
⊢
(1𝑜 × {𝐷}) = (𝑏 ∈ 1𝑜 ↦ 𝐷) |
66 | 64, 65 | syl6eqr 2703 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜
↦ if(𝑏 = ∅,
𝐷, 0)) =
(1𝑜 × {𝐷})) |
67 | | fconst6g 6132 |
. . . . . . . 8
⊢ (𝐷 ∈ ℕ0
→ (1𝑜 × {𝐷}):1𝑜⟶ℕ0) |
68 | 14, 16 | elmap 7928 |
. . . . . . . 8
⊢
((1𝑜 × {𝐷}) ∈ (ℕ0
↑𝑚 1𝑜) ↔ (1𝑜
× {𝐷}):1𝑜⟶ℕ0) |
69 | 67, 68 | sylibr 224 |
. . . . . . 7
⊢ (𝐷 ∈ ℕ0
→ (1𝑜 × {𝐷}) ∈ (ℕ0
↑𝑚 1𝑜)) |
70 | 69 | 3ad2ant3 1104 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(1𝑜 × {𝐷}) ∈ (ℕ0
↑𝑚 1𝑜)) |
71 | 66, 70 | eqeltrd 2730 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜
↦ if(𝑏 = ∅,
𝐷, 0)) ∈
(ℕ0 ↑𝑚
1𝑜)) |
72 | | simp2 1082 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ 𝐾) |
73 | 34, 58, 47, 49, 48, 1, 50, 52, 71, 72 | mplmon2 19541 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)),
(1r‘𝑅),
0 ))) =
(𝑦 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
74 | 46, 57, 73 | 3eqtr2d 2691 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝑦 ∈ (ℕ0
↑𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
75 | | eqeq1 2655 |
. . . 4
⊢ (𝑦 = (1𝑜
× {𝑥}) → (𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)) ↔
(1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)))) |
76 | 75 | ifbid 4141 |
. . 3
⊢ (𝑦 = (1𝑜
× {𝑥}) →
if(𝑦 = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) =
if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) |
77 | 19, 20, 74, 76 | fmptco 6436 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1𝑜 × {𝑥}))) = (𝑥 ∈ ℕ0 ↦
if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
78 | 66 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (𝑏 ∈
1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) = (1𝑜 ×
{𝐷})) |
79 | 78 | eqeq2d 2661 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)) ↔
(1𝑜 × {𝑥}) = (1𝑜 × {𝐷}))) |
80 | | fveq1 6228 |
. . . . . . 7
⊢
((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) →
((1𝑜 × {𝑥})‘∅) = ((1𝑜
× {𝐷})‘∅)) |
81 | | vex 3234 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
82 | 81 | fvconst2 6510 |
. . . . . . . . 9
⊢ (∅
∈ 1𝑜 → ((1𝑜 × {𝑥})‘∅) = 𝑥) |
83 | 53, 82 | mp1i 13 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝑥})‘∅) = 𝑥) |
84 | | simpl3 1086 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ 𝐷 ∈
ℕ0) |
85 | | fvconst2g 6508 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℕ0
∧ ∅ ∈ 1𝑜) → ((1𝑜
× {𝐷})‘∅)
= 𝐷) |
86 | 84, 53, 85 | sylancl 695 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝐷})‘∅) = 𝐷) |
87 | 83, 86 | eqeq12d 2666 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (((1𝑜 × {𝑥})‘∅) = ((1𝑜
× {𝐷})‘∅)
↔ 𝑥 = 𝐷)) |
88 | 80, 87 | syl5ib 234 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) → 𝑥 = 𝐷)) |
89 | | sneq 4220 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → {𝑥} = {𝐷}) |
90 | 89 | xpeq2d 5173 |
. . . . . 6
⊢ (𝑥 = 𝐷 → (1𝑜 ×
{𝑥}) =
(1𝑜 × {𝐷})) |
91 | 88, 90 | impbid1 215 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) ↔ 𝑥 = 𝐷)) |
92 | 79, 91 | bitrd 268 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷)) |
93 | 92 | ifbid 4141 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 )) |
94 | 93 | mpteq2dva 4777 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |
95 | 12, 77, 94 | 3eqtrd 2689 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |