Step | Hyp | Ref
| Expression |
1 | | coe1mul3.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | coe1mul3.f1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
3 | | coe1mul3.g1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
4 | | coe1mul3.s |
. . . . 5
⊢ 𝑌 = (Poly1‘𝑅) |
5 | | coe1mul3.t |
. . . . 5
⊢ ∙ =
(.r‘𝑌) |
6 | | coe1mul3.u |
. . . . 5
⊢ · =
(.r‘𝑅) |
7 | | coe1mul3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
8 | 4, 5, 6, 7 | coe1mul 19842 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
9 | 1, 2, 3, 8 | syl3anc 1477 |
. . 3
⊢ (𝜑 →
(coe1‘(𝐹
∙
𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
10 | 9 | fveq1d 6354 |
. 2
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽))) |
11 | | coe1mul3.f2 |
. . . 4
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
12 | | coe1mul3.g2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
13 | 11, 12 | nn0addcld 11547 |
. . 3
⊢ (𝜑 → (𝐼 + 𝐽) ∈
ℕ0) |
14 | | oveq2 6821 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽))) |
15 | | oveq1 6820 |
. . . . . . . 8
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑥 − 𝑦) = ((𝐼 + 𝐽) − 𝑦)) |
16 | 15 | fveq2d 6356 |
. . . . . . 7
⊢ (𝑥 = (𝐼 + 𝐽) → ((coe1‘𝐺)‘(𝑥 − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) |
17 | 16 | oveq2d 6829 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
18 | 14, 17 | mpteq12dv 4885 |
. . . . 5
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) |
19 | 18 | oveq2d 6829 |
. . . 4
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
20 | | eqid 2760 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) |
21 | | ovex 6841 |
. . . 4
⊢ (𝑅 Σg
(𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V |
22 | 19, 20, 21 | fvmpt 6444 |
. . 3
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
23 | 13, 22 | syl 17 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
24 | | eqid 2760 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
25 | | eqid 2760 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
26 | | ringmnd 18756 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
27 | 1, 26 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
28 | | ovexd 6843 |
. . . 4
⊢ (𝜑 → (0...(𝐼 + 𝐽)) ∈ V) |
29 | 11 | nn0red 11544 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℝ) |
30 | | nn0addge1 11531 |
. . . . . 6
⊢ ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0)
→ 𝐼 ≤ (𝐼 + 𝐽)) |
31 | 29, 12, 30 | syl2anc 696 |
. . . . 5
⊢ (𝜑 → 𝐼 ≤ (𝐼 + 𝐽)) |
32 | | fznn0 12625 |
. . . . . 6
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
33 | 13, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
34 | 11, 31, 33 | mpbir2and 995 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ (0...(𝐼 + 𝐽))) |
35 | 1 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring) |
36 | | eqid 2760 |
. . . . . . . . 9
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
37 | 36, 7, 4, 24 | coe1f 19783 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
38 | 2, 37 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
39 | | elfznn0 12626 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0) |
40 | | ffvelrn 6520 |
. . . . . . 7
⊢
(((coe1‘𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) →
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
41 | 38, 39, 40 | syl2an 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
42 | | eqid 2760 |
. . . . . . . . 9
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
43 | 42, 7, 4, 24 | coe1f 19783 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
44 | 3, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
45 | | fznn0sub 12566 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
46 | | ffvelrn 6520 |
. . . . . . 7
⊢
(((coe1‘𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
47 | 44, 45, 46 | syl2an 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
48 | 24, 6 | ringcl 18761 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
49 | 35, 41, 47, 48 | syl3anc 1477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
50 | | eqid 2760 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
51 | 49, 50 | fmptd 6548 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅)) |
52 | | eldifsn 4462 |
. . . . . 6
⊢ (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) |
53 | 39 | adantl 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0) |
54 | 53 | nn0red 11544 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ) |
55 | 29 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ) |
56 | 54, 55 | lttri2d 10368 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 ↔ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦))) |
57 | 3 | ad2antrr 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺 ∈ 𝐵) |
58 | 45 | adantl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
59 | 58 | adantr 472 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
60 | | coe1mul3.d |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 = ( deg1
‘𝑅) |
61 | 60, 4, 7 | deg1xrcl 24041 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
62 | 3, 61 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
63 | 62 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ∈
ℝ*) |
64 | 12 | nn0red 11544 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 ∈ ℝ) |
65 | 64 | rexrd 10281 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℝ*) |
66 | 65 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈
ℝ*) |
67 | 13 | nn0red 11544 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐼 + 𝐽) ∈ ℝ) |
68 | 67 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ) |
69 | 68, 54 | resubcld 10650 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ) |
70 | 69 | rexrd 10281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
71 | 70 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
72 | | coe1mul3.g3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) |
73 | 72 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ≤ 𝐽) |
74 | 64 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ) |
75 | 54, 55, 74 | ltadd1d 10812 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽))) |
76 | 54, 74, 68 | ltaddsub2d 10820 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
77 | 75, 76 | bitrd 268 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
78 | 77 | biimpa 502 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦)) |
79 | 63, 66, 71, 73, 78 | xrlelttrd 12184 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) |
80 | 60, 4, 7, 25, 42 | deg1lt 24056 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ 𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
81 | 57, 59, 79, 80 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
82 | 81 | oveq2d 6829 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅))) |
83 | 24, 6, 25 | ringrz 18788 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
84 | 35, 41, 83 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
85 | 84 | adantr 472 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
86 | 82, 85 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
87 | 2 | ad2antrr 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹 ∈ 𝐵) |
88 | 53 | adantr 472 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0) |
89 | 60, 4, 7 | deg1xrcl 24041 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
90 | 2, 89 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
91 | 90 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ∈
ℝ*) |
92 | 29 | rexrd 10281 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈
ℝ*) |
93 | 92 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈
ℝ*) |
94 | 54 | rexrd 10281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*) |
95 | 94 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*) |
96 | | coe1mul3.f3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) |
97 | 96 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ≤ 𝐼) |
98 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦) |
99 | 91, 93, 95, 97, 98 | xrlelttrd 12184 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) < 𝑦) |
100 | 60, 4, 7, 25, 36 | deg1lt 24056 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
101 | 87, 88, 99, 100 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
102 | 101 | oveq1d 6828 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
103 | 24, 6, 25 | ringlz 18787 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
104 | 35, 47, 103 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
105 | 104 | adantr 472 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
106 | 102, 105 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
107 | 86, 106 | jaodan 861 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
108 | 107 | ex 449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼 ∨ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
109 | 56, 108 | sylbid 230 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
110 | 109 | impr 650 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
111 | 52, 110 | sylan2b 493 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
112 | 111, 28 | suppss2 7498 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g‘𝑅)) ⊆ {𝐼}) |
113 | 24, 25, 27, 28, 34, 51, 112 | gsumpt 18561 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼)) |
114 | | fveq2 6352 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐹)‘𝑦) = ((coe1‘𝐹)‘𝐼)) |
115 | | oveq2 6821 |
. . . . . . 7
⊢ (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼)) |
116 | 115 | fveq2d 6356 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) |
117 | 114, 116 | oveq12d 6831 |
. . . . 5
⊢ (𝑦 = 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
118 | | ovex 6841 |
. . . . 5
⊢
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V |
119 | 117, 50, 118 | fvmpt 6444 |
. . . 4
⊢ (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
120 | 34, 119 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
121 | 11 | nn0cnd 11545 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℂ) |
122 | 12 | nn0cnd 11545 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℂ) |
123 | 121, 122 | pncan2d 10586 |
. . . . 5
⊢ (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽) |
124 | 123 | fveq2d 6356 |
. . . 4
⊢ (𝜑 →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1‘𝐺)‘𝐽)) |
125 | 124 | oveq2d 6829 |
. . 3
⊢ (𝜑 →
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
126 | 113, 120,
125 | 3eqtrd 2798 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
127 | 10, 23, 126 | 3eqtrd 2798 |
1
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |