MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 19687
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6132 . . . . 5 (𝑘 ∈ ℕ0 → (1𝑜 × {𝑘}):1𝑜⟶ℕ0)
2 nn0ex 11336 . . . . . 6 0 ∈ V
3 1on 7612 . . . . . . 7 1𝑜 ∈ On
43elexi 3244 . . . . . 6 1𝑜 ∈ V
52, 4elmap 7928 . . . . 5 ((1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜) ↔ (1𝑜 × {𝑘}):1𝑜⟶ℕ0)
61, 5sylibr 224 . . . 4 (𝑘 ∈ ℕ0 → (1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜))
76adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜))
8 eqidd 2652 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})))
9 eqid 2651 . . . 4 (1𝑜 mPwSer 𝑅) = (1𝑜 mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 19608 . . . 4 𝐵 = (Base‘(1𝑜 mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 19642 . . . 4 = (.r‘(1𝑜 mPwSer 𝑅))
16 psr1baslem 19603 . . . 4 (ℕ0𝑚 1𝑜) = {𝑎 ∈ (ℕ0𝑚 1𝑜) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1082 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1083 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 19433 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0𝑚 1𝑜) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐)))))))
20 breq2 4689 . . . . . 6 (𝑏 = (1𝑜 × {𝑘}) → (𝑑𝑟𝑏𝑑𝑟 ≤ (1𝑜 × {𝑘})))
2120rabbidv 3220 . . . . 5 (𝑏 = (1𝑜 × {𝑘}) → {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} = {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})})
22 oveq1 6697 . . . . . . 7 (𝑏 = (1𝑜 × {𝑘}) → (𝑏𝑓𝑐) = ((1𝑜 × {𝑘}) ∘𝑓𝑐))
2322fveq2d 6233 . . . . . 6 (𝑏 = (1𝑜 × {𝑘}) → (𝐺‘(𝑏𝑓𝑐)) = (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))
2423oveq2d 6706 . . . . 5 (𝑏 = (1𝑜 × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐))) = ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))
2521, 24mpteq12dv 4766 . . . 4 (𝑏 = (1𝑜 × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))
2625oveq2d 6706 . . 3 (𝑏 = (1𝑜 × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
277, 8, 19, 26fmptco 6436 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))))
2810psr1ring 19665 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2911, 14ringcl 18607 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
3028, 29syl3an1 1399 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
31 eqid 2651 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
32 eqid 2651 . . . 4 (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))
3331, 11, 10, 32coe1fval3 19626 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))))
3430, 33syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))))
35 eqid 2651 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
36 eqid 2651 . . . . 5 (0g𝑅) = (0g𝑅)
37 simpl1 1084 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringcmn 18627 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3937, 38syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
40 fzfi 12811 . . . . . 6 (0...𝑘) ∈ Fin
4140a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
42 simpll1 1120 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
43 simpll2 1121 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
44 eqid 2651 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4544, 11, 10, 35coe1f2 19627 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4643, 45syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
47 elfznn0 12471 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4847adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4946, 48ffvelrnd 6400 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
50 simpll3 1122 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
51 eqid 2651 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5251, 11, 10, 35coe1f2 19627 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5350, 52syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
54 fznn0sub 12411 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5554adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5653, 55ffvelrnd 6400 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5735, 13ringcl 18607 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5842, 49, 56, 57syl3anc 1366 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
59 eqid 2651 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6058, 59fmptd 6425 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
6140elexi 3244 . . . . . . . . 9 (0...𝑘) ∈ V
6261mptex 6527 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
63 funmpt 5964 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
64 fvex 6239 . . . . . . . 8 (0g𝑅) ∈ V
6562, 63, 643pm3.2i 1259 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
66 suppssdm 7353 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6759dmmptss 5669 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6866, 67sstri 3645 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6940, 68pm3.2i 470 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
70 suppssfifsupp 8331 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7165, 69, 70mp2an 708 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7271a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
73 eqid 2651 . . . . . . 7 {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} = {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}
7473coe1mul2lem2 19686 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}–1-1-onto→(0...𝑘))
7574adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}–1-1-onto→(0...𝑘))
7635, 36, 39, 41, 60, 72, 75gsumf1o 18363 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))))
77 breq1 4688 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑𝑟 ≤ (1𝑜 × {𝑘}) ↔ 𝑐𝑟 ≤ (1𝑜 × {𝑘})))
7877elrab 3396 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↔ (𝑐 ∈ (ℕ0𝑚 1𝑜) ∧ 𝑐𝑟 ≤ (1𝑜 × {𝑘})))
7978simprbi 479 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} → 𝑐𝑟 ≤ (1𝑜 × {𝑘}))
8079adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐𝑟 ≤ (1𝑜 × {𝑘}))
81 simplr 807 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑘 ∈ ℕ0)
82 elrabi 3391 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} → 𝑐 ∈ (ℕ0𝑚 1𝑜))
8382adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐 ∈ (ℕ0𝑚 1𝑜))
84 coe1mul2lem1 19685 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0𝑚 1𝑜)) → (𝑐𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8581, 83, 84syl2anc 694 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8680, 85mpbid 222 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
87 eqidd 2652 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))
88 eqidd 2652 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
89 fveq2 6229 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
90 oveq2 6698 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9190fveq2d 6233 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9289, 91oveq12d 6708 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9386, 87, 88, 92fmptco 6436 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
94 simpll2 1121 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝐹𝐵)
9544fvcoe1 19625 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9694, 83, 95syl2anc 694 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
97 df1o2 7617 . . . . . . . . . . . . . 14 1𝑜 = {∅}
98 0ex 4823 . . . . . . . . . . . . . 14 ∅ ∈ V
9997, 2, 98mapsnconst 7945 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0𝑚 1𝑜) → 𝑐 = (1𝑜 × {(𝑐‘∅)}))
10083, 99syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐 = (1𝑜 × {(𝑐‘∅)}))
101100oveq2d 6706 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓𝑐) = ((1𝑜 × {𝑘}) ∘𝑓 − (1𝑜 × {(𝑐‘∅)})))
1023a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 1𝑜 ∈ On)
103 vex 3234 . . . . . . . . . . . . 13 𝑘 ∈ V
104103a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑘 ∈ V)
105 fvexd 6241 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐‘∅) ∈ V)
106102, 104, 105ofc12 6964 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓 − (1𝑜 × {(𝑐‘∅)})) = (1𝑜 × {(𝑘 − (𝑐‘∅))}))
107101, 106eqtrd 2685 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓𝑐) = (1𝑜 × {(𝑘 − (𝑐‘∅))}))
108107fveq2d 6233 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
109 simpll3 1122 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝐺𝐵)
110 fznn0sub 12411 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11186, 110syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11251coe1fv 19624 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
113109, 111, 112syl2anc 694 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
114108, 113eqtr4d 2688 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11596, 114oveq12d 6708 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
116115mpteq2dva 4777 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11793, 116eqtr4d 2688 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))
118117oveq2d 6706 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
11976, 118eqtrd 2685 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
120119mpteq2dva 4777 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))))
12127, 34, 1203eqtr4d 2695 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  ccom 5147  Oncon0 5761  Fun wfun 5920  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  𝑓 cof 6937  𝑟 cofr 6938   supp csupp 7340  1𝑜c1o 7598  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316  0cc0 9974  cle 10113  cmin 10304  0cn0 11330  ...cfz 12364  Basecbs 15904  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  CMndccmn 18239  Ringcrg 18593   mPwSer cmps 19399  PwSer1cps1 19593  coe1cco1 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-psr 19404  df-opsr 19408  df-psr1 19598  df-coe1 19601
This theorem is referenced by:  coe1mul  19688
  Copyright terms: Public domain W3C validator