MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   GIF version

Theorem coe1fzgsumd 19720
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
coe1fzgsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝐵)
coe1fzgsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
coe1fzgsumd (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem coe1fzgsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝐵)
2 coe1fzgsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3168 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ ∅ 𝑀𝐵))
43anbi2d 740 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵)))
5 mpteq1 4770 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 6706 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6233 . . . . . . . 8 (𝑛 = ∅ → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6231 . . . . . . 7 (𝑛 = ∅ → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾))
9 mpteq1 4770 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))
109oveq2d 6706 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
118, 10eqeq12d 2666 . . . . . 6 (𝑛 = ∅ → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))))
124, 11imbi12d 333 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))))
13 raleq 3168 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑚 𝑀𝐵))
1413anbi2d 740 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝐵)))
15 mpteq1 4770 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 6706 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6233 . . . . . . . 8 (𝑛 = 𝑚 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6231 . . . . . . 7 (𝑛 = 𝑚 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾))
19 mpteq1 4770 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
2019oveq2d 6706 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))
2118, 20eqeq12d 2666 . . . . . 6 (𝑛 = 𝑚 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))))
2214, 21imbi12d 333 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
23 raleq 3168 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵))
2423anbi2d 740 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵)))
25 mpteq1 4770 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 6706 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6233 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6231 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾))
29 mpteq1 4770 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))
3029oveq2d 6706 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
3128, 30eqeq12d 2666 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
3224, 31imbi12d 333 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
33 raleq 3168 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑁 𝑀𝐵))
3433anbi2d 740 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝐵)))
35 mpteq1 4770 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 6706 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6233 . . . . . . . 8 (𝑛 = 𝑁 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6231 . . . . . . 7 (𝑛 = 𝑁 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾))
39 mpteq1 4770 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))
4039oveq2d 6706 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
4138, 40eqeq12d 2666 . . . . . 6 (𝑛 = 𝑁 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
4234, 41imbi12d 333 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
43 mpt0 6059 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 6701 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2651 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 17325 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2673 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6232 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃))
4948a1i 11 . . . . . . . . 9 (𝜑 → (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃)))
5049fveq1d 6231 . . . . . . . 8 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = ((coe1‘(0g𝑃))‘𝐾))
51 coe1fzgsumd.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 coe1fzgsumd.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
53 eqid 2651 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5452, 45, 53coe1z 19681 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5551, 54syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5655fveq1d 6231 . . . . . . . 8 (𝜑 → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
57 fvex 6239 . . . . . . . . 9 (0g𝑅) ∈ V
58 coe1fzgsumd.k . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
59 fvconst2g 6508 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6057, 58, 59sylancr 696 . . . . . . . 8 (𝜑 → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6150, 56, 603eqtrd 2689 . . . . . . 7 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (0g𝑅))
62 mpt0 6059 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)) = ∅
6362oveq2i 6701 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg ∅)
6453gsum0 17325 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
6563, 64eqtri 2673 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (0g𝑅)
6661, 65syl6eqr 2703 . . . . . 6 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
68 coe1fzgsumd.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
6952, 68, 51, 58coe1fzgsumdlem 19719 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
70693expia 1286 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
7170a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
72 impexp 461 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
73 impexp 461 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7471, 72, 733imtr4g 285 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7512, 22, 32, 42, 67, 74findcard2s 8242 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
7675expd 451 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
772, 76mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
781, 77mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cun 3605  c0 3948  {csn 4210  cmpt 4762   × cxp 5141  cfv 5926  (class class class)co 6690  Fincfn 7997  0cn0 11330  Basecbs 15904  0gc0g 16147   Σg cgsu 16148  Ringcrg 18593  Poly1cpl1 19595  coe1cco1 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-psr 19404  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-ply1 19600  df-coe1 19601
This theorem is referenced by:  gsummoncoe1  19722  cpmatmcllem  20571  decpmatmullem  20624  mp2pm2mplem4  20662
  Copyright terms: Public domain W3C validator