MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval Structured version   Visualization version   GIF version

Theorem coe1fval 19797
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fval (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝑉(𝑛)

Proof of Theorem coe1fval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐹𝑉𝐹 ∈ V)
2 coe1fval.a . . 3 𝐴 = (coe1𝐹)
3 fveq1 6352 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(1𝑜 × {𝑛})) = (𝐹‘(1𝑜 × {𝑛})))
43mpteq2dv 4897 . . . 4 (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
5 df-coe1 19775 . . . 4 coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛}))))
6 nn0ex 11510 . . . . 5 0 ∈ V
76mptex 6651 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))) ∈ V
84, 5, 7fvmpt 6445 . . 3 (𝐹 ∈ V → (coe1𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
92, 8syl5eq 2806 . 2 (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
101, 9syl 17 1 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  Vcvv 3340  {csn 4321  cmpt 4881   × cxp 5264  cfv 6049  1𝑜c1o 7723  0cn0 11504  coe1cco1 19770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-nn 11233  df-n0 11505  df-coe1 19775
This theorem is referenced by:  coe1fv  19798  coe1fval3  19800
  Copyright terms: Public domain W3C validator