![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fval | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
coe1fval | ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
3 | fveq1 6352 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(1𝑜 × {𝑛})) = (𝐹‘(1𝑜 × {𝑛}))) | |
4 | 3 | mpteq2dv 4897 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) |
5 | df-coe1 19775 | . . . 4 ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛})))) | |
6 | nn0ex 11510 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | mptex 6651 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))) ∈ V |
8 | 4, 5, 7 | fvmpt 6445 | . . 3 ⊢ (𝐹 ∈ V → (coe1‘𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) |
9 | 2, 8 | syl5eq 2806 | . 2 ⊢ (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) |
10 | 1, 9 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 ↦ cmpt 4881 × cxp 5264 ‘cfv 6049 1𝑜c1o 7723 ℕ0cn0 11504 coe1cco1 19770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-nn 11233 df-n0 11505 df-coe1 19775 |
This theorem is referenced by: coe1fv 19798 coe1fval3 19800 |
Copyright terms: Public domain | W3C validator |