![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cocnvcnv2 | Structured version Visualization version GIF version |
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cocnvcnv2 | ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 5746 | . . 3 ⊢ ◡◡𝐵 = (𝐵 ↾ V) | |
2 | 1 | coeq2i 5438 | . 2 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ (𝐵 ↾ V)) |
3 | resco 5800 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V)) | |
4 | relco 5794 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
5 | dfrel3 5750 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵)) | |
6 | 4, 5 | mpbi 220 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵) |
7 | 2, 3, 6 | 3eqtr2i 2788 | 1 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 Vcvv 3340 ◡ccnv 5265 ↾ cres 5268 ∘ ccom 5270 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-res 5278 |
This theorem is referenced by: dfdm2 5828 cofunex2g 7297 trclubgNEW 38445 cnvtrrel 38482 trrelsuperrel2dg 38483 |
Copyright terms: Public domain | W3C validator |