MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coapm Structured version   Visualization version   GIF version

Theorem coapm 16927
Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coapm.o · = (compa𝐶)
coapm.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
coapm · ∈ (𝐴pm (𝐴 × 𝐴))

Proof of Theorem coapm
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coapm.o . . . . . 6 · = (compa𝐶)
2 coapm.a . . . . . 6 𝐴 = (Arrow‘𝐶)
3 eqid 2770 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 16920 . . . . 5 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54mpt2fun 6908 . . . 4 Fun ·
6 funfn 6061 . . . 4 (Fun ·· Fn dom · )
75, 6mpbi 220 . . 3 · Fn dom ·
81, 2dmcoass 16922 . . . . . . . . 9 dom · ⊆ (𝐴 × 𝐴)
98sseli 3746 . . . . . . . 8 (𝑧 ∈ dom ·𝑧 ∈ (𝐴 × 𝐴))
10 1st2nd2 7353 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
119, 10syl 17 . . . . . . 7 (𝑧 ∈ dom ·𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211fveq2d 6336 . . . . . 6 (𝑧 ∈ dom · → ( ·𝑧) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩))
13 df-ov 6795 . . . . . 6 ((1st𝑧) · (2nd𝑧)) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩)
1412, 13syl6eqr 2822 . . . . 5 (𝑧 ∈ dom · → ( ·𝑧) = ((1st𝑧) · (2nd𝑧)))
15 eqid 2770 . . . . . . 7 (Homa𝐶) = (Homa𝐶)
162, 15homarw 16902 . . . . . 6 ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))) ⊆ 𝐴
17 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ dom ·𝑧 ∈ dom · )
1811, 17eqeltrrd 2850 . . . . . . . . . . . 12 (𝑧 ∈ dom · → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
19 df-br 4785 . . . . . . . . . . . 12 ((1st𝑧)dom · (2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
2018, 19sylibr 224 . . . . . . . . . . 11 (𝑧 ∈ dom · → (1st𝑧)dom · (2nd𝑧))
211, 2eldmcoa 16921 . . . . . . . . . . 11 ((1st𝑧)dom · (2nd𝑧) ↔ ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2220, 21sylib 208 . . . . . . . . . 10 (𝑧 ∈ dom · → ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2322simp1d 1135 . . . . . . . . 9 (𝑧 ∈ dom · → (2nd𝑧) ∈ 𝐴)
242, 15arwhoma 16901 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐴 → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2523, 24syl 17 . . . . . . . 8 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2622simp3d 1137 . . . . . . . . 9 (𝑧 ∈ dom · → (coda‘(2nd𝑧)) = (doma‘(1st𝑧)))
2726oveq2d 6808 . . . . . . . 8 (𝑧 ∈ dom · → ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))) = ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2825, 27eleqtrd 2851 . . . . . . 7 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2922simp2d 1136 . . . . . . . 8 (𝑧 ∈ dom · → (1st𝑧) ∈ 𝐴)
302, 15arwhoma 16901 . . . . . . . 8 ((1st𝑧) ∈ 𝐴 → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3129, 30syl 17 . . . . . . 7 (𝑧 ∈ dom · → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
321, 15, 28, 31coahom 16926 . . . . . 6 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3316, 32sseldi 3748 . . . . 5 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ 𝐴)
3414, 33eqeltrd 2849 . . . 4 (𝑧 ∈ dom · → ( ·𝑧) ∈ 𝐴)
3534rgen 3070 . . 3 𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴
36 ffnfv 6530 . . 3 ( · :dom ·𝐴 ↔ ( · Fn dom · ∧ ∀𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴))
377, 35, 36mpbir2an 682 . 2 · :dom ·𝐴
38 fvex 6342 . . . 4 (Arrow‘𝐶) ∈ V
392, 38eqeltri 2845 . . 3 𝐴 ∈ V
4039, 39xpex 7108 . . 3 (𝐴 × 𝐴) ∈ V
4139, 40elpm2 8040 . 2 ( · ∈ (𝐴pm (𝐴 × 𝐴)) ↔ ( · :dom ·𝐴 ∧ dom · ⊆ (𝐴 × 𝐴)))
4237, 8, 41mpbir2an 682 1 · ∈ (𝐴pm (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  w3a 1070   = wceq 1630  wcel 2144  wral 3060  {crab 3064  Vcvv 3349  wss 3721  cop 4320  cotp 4322   class class class wbr 4784   × cxp 5247  dom cdm 5249  Fun wfun 6025   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  pm cpm 8009  compcco 16160  domacdoma 16876  codaccoda 16877  Arrowcarw 16878  Homachoma 16879  compaccoa 16910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-ot 4323  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-pm 8011  df-cat 16535  df-doma 16880  df-coda 16881  df-homa 16882  df-arw 16883  df-coa 16912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator