![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnxmet | Structured version Visualization version GIF version |
Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnxmet | ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmet 22776 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
2 | metxmet 22340 | . 2 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ∘ ccom 5270 ‘cfv 6049 ℂcc 10126 − cmin 10458 abscabs 14173 ∞Metcxmt 19933 Metcme 19934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-xadd 12140 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-xmet 19941 df-met 19942 |
This theorem is referenced by: cnbl0 22778 cnfldms 22780 cnfldtopn 22786 cnfldhaus 22789 blcvx 22802 tgioo2 22807 recld2 22818 zdis 22820 reperflem 22822 addcnlem 22868 divcn 22872 iitopon 22883 dfii3 22887 cncfmet 22912 cncfcn 22913 cnheibor 22955 cnllycmp 22956 ipcn 23245 lmclim 23301 cnflduss 23352 reust 23369 ellimc3 23842 dvlipcn 23956 dvlip2 23957 dv11cn 23963 lhop1lem 23975 ftc1lem6 24003 ulmdvlem1 24353 ulmdvlem3 24355 psercn 24379 pserdvlem2 24381 pserdv 24382 abelthlem2 24385 abelthlem3 24386 abelthlem5 24388 abelthlem7 24391 abelth 24394 dvlog2lem 24597 dvlog2 24598 efopnlem2 24602 efopn 24603 logtayl 24605 logtayl2 24607 cxpcn3 24688 rlimcnp 24891 xrlimcnp 24894 efrlim 24895 lgamucov 24963 lgamcvg2 24980 ftalem3 25000 smcnlem 27861 hhcnf 29073 tpr2rico 30267 qqhucn 30345 blsconn 31533 cnllysconn 31534 ftc1cnnc 33797 cntotbnd 33908 reheibor 33951 binomcxplemdvbinom 39054 binomcxplemnotnn0 39057 iooabslt 40224 limcrecl 40364 islpcn 40374 stirlinglem5 40798 |
Copyright terms: Public domain | W3C validator |