MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvun Structured version   Visualization version   GIF version

Theorem cnvun 5688
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 5266 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
2 unopab 4872 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
3 brun 4847 . . . . 5 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
43opabbii 4861 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
52, 4eqtr4i 2777 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
61, 5eqtr4i 2777 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
7 df-cnv 5266 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
8 df-cnv 5266 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
97, 8uneq12i 3900 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
106, 9eqtr4i 2777 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 382   = wceq 1624  cun 3705   class class class wbr 4796  {copab 4856  ccnv 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-v 3334  df-un 3712  df-br 4797  df-opab 4857  df-cnv 5266
This theorem is referenced by:  rnun  5691  funcnvpr  6103  funcnvtp  6104  funcnvqp  6105  funcnvqpOLD  6106  f1oun  6309  f1oprswap  6333  suppun  7475  sbthlem8  8234  domss2  8276  1sdom  8320  fsuppun  8451  fpwwe2lem13  9648  trclublem  13927  strlemor1OLD  16163  xpsc  16411  mbfres2  23603  ex-cnv  27597  padct  29798  eulerpartlemt  30734  mthmpps  31778  clcnvlem  38424  frege131d  38550
  Copyright terms: Public domain W3C validator