![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvtsr | Structured version Visualization version GIF version |
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvtsr | ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsrps 17443 | . . 3 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | |
2 | cnvps 17434 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ PosetRel) |
4 | eqid 2761 | . . . . 5 ⊢ dom 𝑅 = dom 𝑅 | |
5 | 4 | istsr 17439 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
6 | 5 | simprbi 483 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅)) |
7 | 4 | psrn 17431 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅) |
9 | 8 | sqxpeqd 5299 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅)) |
10 | psrel 17425 | . . . . . . 7 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ TosetRel → Rel 𝑅) |
12 | dfrel2 5742 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
13 | 11, 12 | sylib 208 | . . . . 5 ⊢ (𝑅 ∈ TosetRel → ◡◡𝑅 = 𝑅) |
14 | 13 | uneq2d 3911 | . . . 4 ⊢ (𝑅 ∈ TosetRel → (◡𝑅 ∪ ◡◡𝑅) = (◡𝑅 ∪ 𝑅)) |
15 | uncom 3901 | . . . 4 ⊢ (◡𝑅 ∪ 𝑅) = (𝑅 ∪ ◡𝑅) | |
16 | 14, 15 | syl6req 2812 | . . 3 ⊢ (𝑅 ∈ TosetRel → (𝑅 ∪ ◡𝑅) = (◡𝑅 ∪ ◡◡𝑅)) |
17 | 6, 9, 16 | 3sstr3d 3789 | . 2 ⊢ (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅)) |
18 | df-rn 5278 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
19 | 18 | istsr 17439 | . 2 ⊢ (◡𝑅 ∈ TosetRel ↔ (◡𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅))) |
20 | 3, 17, 19 | sylanbrc 701 | 1 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∪ cun 3714 ⊆ wss 3716 × cxp 5265 ◡ccnv 5266 dom cdm 5267 ran crn 5268 Rel wrel 5272 PosetRelcps 17420 TosetRel ctsr 17421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ps 17422 df-tsr 17423 |
This theorem is referenced by: ordtbas2 21218 ordtrest2 21231 cnvordtrestixx 30290 |
Copyright terms: Public domain | W3C validator |