Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvso Structured version   Visualization version   GIF version

Theorem cnvso 5712
 Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvso (𝑅 Or 𝐴𝑅 Or 𝐴)

Proof of Theorem cnvso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpo 5711 . . 3 (𝑅 Po 𝐴𝑅 Po 𝐴)
2 ralcom 3127 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
3 vex 3234 . . . . . . 7 𝑦 ∈ V
4 vex 3234 . . . . . . 7 𝑥 ∈ V
53, 4brcnv 5337 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
6 equcom 1991 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
74, 3brcnv 5337 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 6, 73orbi123i 1271 . . . . 5 ((𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
982ralbii 3010 . . . 4 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
102, 9bitr4i 267 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦))
111, 10anbi12i 733 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
12 df-so 5065 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
13 df-so 5065 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
1411, 12, 133bitr4i 292 1 (𝑅 Or 𝐴𝑅 Or 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∨ w3o 1053  ∀wral 2941   class class class wbr 4685   Po wpo 5062   Or wor 5063  ◡ccnv 5142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-po 5064  df-so 5065  df-cnv 5151 This theorem is referenced by:  infexd  8430  eqinf  8431  infval  8433  infcl  8435  inflb  8436  infglb  8437  infglbb  8438  fiinfcl  8448  infltoreq  8449  infempty  8453  infiso  8454  wofib  8491  oemapso  8617  cflim2  9123  fin23lem40  9211  gtso  10157  tosglb  29798  xrsclat  29808  xrge0iifiso  30109  inffzOLD  31741  socnv  31780  nomaxmo  31972  welb  33661  xrgtso  39874
 Copyright terms: Public domain W3C validator