![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsnOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cnvsn 5761 as of 12-Feb-2022. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
cnvsnOLD | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvsn 5754 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
2 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | relsnop 5367 | . . 3 ⊢ Rel {〈𝐵, 𝐴〉} |
5 | dfrel2 5724 | . . 3 ⊢ (Rel {〈𝐵, 𝐴〉} ↔ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) | |
6 | 4, 5 | mpbi 220 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉} |
7 | 1, 6 | eqtr3i 2794 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 Vcvv 3349 {csn 4314 〈cop 4320 ◡ccnv 5248 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |