MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsn0 Structured version   Visualization version   GIF version

Theorem cnvsn0 5749
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0 {∅} = ∅

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 5459 . . 3 dom {∅} = ran {∅}
2 dmsn0 5748 . . 3 dom {∅} = ∅
31, 2eqtr3i 2772 . 2 ran {∅} = ∅
4 relcnv 5649 . . 3 Rel {∅}
5 relrn0 5526 . . 3 (Rel {∅} → ({∅} = ∅ ↔ ran {∅} = ∅))
64, 5ax-mp 5 . 2 ({∅} = ∅ ↔ ran {∅} = ∅)
73, 6mpbir 221 1 {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1620  c0 4046  {csn 4309  ccnv 5253  dom cdm 5254  ran crn 5255  Rel wrel 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-rab 3047  df-v 3330  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-br 4793  df-opab 4853  df-xp 5260  df-rel 5261  df-cnv 5262  df-dm 5264  df-rn 5265
This theorem is referenced by:  opswap  5771  brtpos0  7516  tpostpos  7529
  Copyright terms: Public domain W3C validator