![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsn0 | Structured version Visualization version GIF version |
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
cnvsn0 | ⊢ ◡{∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5459 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
2 | dmsn0 5748 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 1, 2 | eqtr3i 2772 | . 2 ⊢ ran ◡{∅} = ∅ |
4 | relcnv 5649 | . . 3 ⊢ Rel ◡{∅} | |
5 | relrn0 5526 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
7 | 3, 6 | mpbir 221 | 1 ⊢ ◡{∅} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1620 ∅c0 4046 {csn 4309 ◡ccnv 5253 dom cdm 5254 ran crn 5255 Rel wrel 5259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 df-rel 5261 df-cnv 5262 df-dm 5264 df-rn 5265 |
This theorem is referenced by: opswap 5771 brtpos0 7516 tpostpos 7529 |
Copyright terms: Public domain | W3C validator |