Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvoprab Structured version   Visualization version   GIF version

Theorem cnvoprab 7378
 Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.)
Hypotheses
Ref Expression
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑎)

Proof of Theorem cnvoprab
StepHypRef Expression
1 cnvoprab.1 . . . 4 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
21dfoprab3 7372 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
32cnveqi 5435 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 cnvopab 5674 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
5 inopab 5391 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
6 cnvoprab.2 . . . . 5 (𝜓𝑎 ∈ (V × V))
76ssopab2i 5136 . . . 4 {⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)}
8 sseqin2 3966 . . . 4 ({⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ↔ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓})
97, 8mpbi 220 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
104, 5, 93eqtr2i 2798 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
113, 10eqtr3i 2794 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ∩ cin 3720   ⊆ wss 3721  ⟨cop 4320  {copab 4844   × cxp 5247  ◡ccnv 5248  {coprab 6793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fv 6039  df-oprab 6796  df-1st 7314  df-2nd 7315 This theorem is referenced by:  f1od2  29833  dfxrn2  34473
 Copyright terms: Public domain W3C validator