MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Visualization version   GIF version

Theorem cnvopab 5568
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5538 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopab 5280 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 opelopabsbALT 5013 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
4 sbcom2 2473 . . . 4 ([𝑧 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
53, 4bitri 264 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
6 vex 3234 . . . 4 𝑧 ∈ V
7 vex 3234 . . . 4 𝑤 ∈ V
86, 7opelcnv 5336 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
9 opelopabsbALT 5013 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
105, 8, 93bitr4i 292 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
111, 2, 10eqrelriiv 5248 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  [wsb 1937  wcel 2030  cop 4216  {copab 4745  ccnv 5142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151
This theorem is referenced by:  mptcnv  5569  cnvxp  5586  mptpreima  5666  f1ocnvd  6926  cnvoprab  7274  mapsncnv  7946  compsscnv  9231  dfiso2  16479  xkocnv  21665  lgsquadlem3  25152  axcontlem2  25890  cnvadj  28879  f1o3d  29559  cnvoprabOLD  29626  xrninxp  34290  fsovrfovd  38620
  Copyright terms: Public domain W3C validator