MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 5626
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 5616 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5261 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 5604 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5453 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2803 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  ccnv 5249  dom cdm 5250  ran crn 5251  cima 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-cnv 5258  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263
This theorem is referenced by:  cnrest2  21311  mbfconstlem  23615  i1fima  23665  i1fima2  23666  i1fd  23668  i1f0rn  23669  itg1addlem5  23687  fcoinver  29756  sibfof  30742  itg2addnclem  33793  itg2addnclem2  33794  ftc1anclem6  33822
  Copyright terms: Public domain W3C validator