![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version |
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5616 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
2 | df-rn 5261 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
3 | 2 | imaeq2i 5604 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
4 | dfdm4 5453 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 1, 3, 4 | 3eqtr4i 2803 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ◡ccnv 5249 dom cdm 5250 ran crn 5251 “ cima 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-xp 5256 df-cnv 5258 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 |
This theorem is referenced by: cnrest2 21311 mbfconstlem 23615 i1fima 23665 i1fima2 23666 i1fd 23668 i1f0rn 23669 itg1addlem5 23687 fcoinver 29756 sibfof 30742 itg2addnclem 33793 itg2addnclem2 33794 ftc1anclem6 33822 |
Copyright terms: Public domain | W3C validator |