![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvf1o | Structured version Visualization version GIF version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o | ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) | |
2 | snex 5013 | . . . . 5 ⊢ {𝑥} ∈ V | |
3 | 2 | cnvex 7230 | . . . 4 ⊢ ◡{𝑥} ∈ V |
4 | 3 | uniex 7070 | . . 3 ⊢ ∪ ◡{𝑥} ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑥 ∈ 𝐴) → ∪ ◡{𝑥} ∈ V) |
6 | snex 5013 | . . . . 5 ⊢ {𝑦} ∈ V | |
7 | 6 | cnvex 7230 | . . . 4 ⊢ ◡{𝑦} ∈ V |
8 | 7 | uniex 7070 | . . 3 ⊢ ∪ ◡{𝑦} ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑦 ∈ ◡𝐴) → ∪ ◡{𝑦} ∈ V) |
10 | cnvf1olem 7395 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
11 | relcnv 5613 | . . . . 5 ⊢ Rel ◡𝐴 | |
12 | simpr 479 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
13 | cnvf1olem 7395 | . . . . 5 ⊢ ((Rel ◡𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) | |
14 | 11, 12, 13 | sylancr 698 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
15 | dfrel2 5693 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
16 | eleq2 2792 | . . . . . . 7 ⊢ (◡◡𝐴 = 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) | |
17 | 15, 16 | sylbi 207 | . . . . . 6 ⊢ (Rel 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) |
18 | 17 | anbi1d 743 | . . . . 5 ⊢ (Rel 𝐴 → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
19 | 18 | adantr 472 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
20 | 14, 19 | mpbid 222 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
21 | 10, 20 | impbida 913 | . 2 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦}))) |
22 | 1, 5, 9, 21 | f1od 7002 | 1 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 {csn 4285 ∪ cuni 4544 ↦ cmpt 4837 ◡ccnv 5217 Rel wrel 5223 –1-1-onto→wf1o 6000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-1st 7285 df-2nd 7286 |
This theorem is referenced by: tposf12 7497 cnven 8148 xpcomf1o 8165 fsumcnv 14624 fprodcnv 14833 gsumcom2 18495 |
Copyright terms: Public domain | W3C validator |