![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5538 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 5694 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5154 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7140 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | syl5eqelr 2735 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5348 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7139 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | syl5eqelr 2735 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | xpexg 7002 | . . 3 ⊢ ((dom ◡𝐴 ∈ V ∧ ran ◡𝐴 ∈ V) → (dom ◡𝐴 × ran ◡𝐴) ∈ V) | |
11 | 6, 9, 10 | syl2anc 694 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
12 | ssexg 4837 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
13 | 3, 11, 12 | sylancr 696 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 × cxp 5141 ◡ccnv 5142 dom cdm 5143 ran crn 5144 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: cnvex 7155 relcnvexb 7156 cofunex2g 7173 tposexg 7411 cnven 8073 cnvct 8074 fopwdom 8109 domssex2 8161 domssex 8162 cnvfi 8289 mapfienlem2 8352 wemapwe 8632 hasheqf1oi 13180 brtrclfvcnv 13789 brcnvtrclfvcnv 13790 relexpcnv 13819 relexpnnrn 13829 relexpaddg 13837 imasle 16230 cnvps 17259 gsumvalx 17317 symginv 17868 tposmap 20311 metustel 22402 metustss 22403 metustfbas 22409 metuel2 22417 psmetutop 22419 restmetu 22422 itg2gt0 23572 nlfnval 28868 ffsrn 29632 eulerpartlemgs2 30570 orvcval 30647 coinfliprv 30672 cossex 34314 cosscnvex 34315 cnvelrels 34385 lkrval 34693 pw2f1o2val 37923 lmhmlnmsplit 37974 cnvcnvintabd 38223 clrellem 38246 relexpaddss 38327 cnvtrclfv 38333 rntrclfvRP 38340 xpexb 38975 sge0f1o 40917 smfco 41330 |
Copyright terms: Public domain | W3C validator |