![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1900 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 3307 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3307 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 5400 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 3307 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 5412 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 5412 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 735 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1887 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 292 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 4825 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 5226 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 5227 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2756 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ∃wex 1817 class class class wbr 4760 {copab 4820 ◡ccnv 5217 ∘ ccom 5222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-cnv 5226 df-co 5227 |
This theorem is referenced by: rncoss 5493 rncoeq 5496 dmco 5756 cores2 5761 co01 5763 coi2 5765 relcnvtr 5768 dfdm2 5780 f1co 6223 cofunex2g 7248 fparlem3 7399 fparlem4 7400 supp0cosupp0 7454 imacosupp 7455 fsuppcolem 8422 relexpcnv 13895 relexpaddg 13913 cnvps 17334 gimco 17832 gsumzf1o 18434 cnco 21193 ptrescn 21565 qtopcn 21640 hmeoco 21698 cncombf 23545 deg1val 23976 fcoinver 29646 ofpreima 29695 mbfmco 30556 eulerpartlemmf 30667 cvmliftmolem1 31491 cvmlift2lem9a 31513 cvmlift2lem9 31521 mclsppslem 31708 ftc1anclem3 33719 trlcocnv 36427 tendoicl 36503 cdlemk45 36654 cononrel1 38319 cononrel2 38320 cnvtrcl0 38352 cnvtrrel 38381 relexpaddss 38429 frege131d 38475 brco2f1o 38749 brco3f1o 38750 clsneicnv 38822 neicvgnvo 38832 smfco 41432 |
Copyright terms: Public domain | W3C validator |