Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcnvintabd Structured version   Visualization version   GIF version

Theorem cnvcnvintabd 38432
Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvcnvintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
cnvcnvintabd (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem cnvcnvintabd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvcnv 5727 . . . . . . . . . 10 𝑥 = (𝑥 ∩ (V × V))
21eleq2i 2842 . . . . . . . . 9 (𝑦𝑥𝑦 ∈ (𝑥 ∩ (V × V)))
3 elin 3947 . . . . . . . . . 10 (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ (𝑦𝑥𝑦 ∈ (V × V)))
43rbaib 528 . . . . . . . . 9 (𝑦 ∈ (V × V) → (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ 𝑦𝑥))
52, 4syl5bb 272 . . . . . . . 8 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
65bicomd 213 . . . . . . 7 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
76imbi2d 329 . . . . . 6 (𝑦 ∈ (V × V) → ((𝜓𝑦𝑥) ↔ (𝜓𝑦𝑥)))
87albidv 2001 . . . . 5 (𝑦 ∈ (V × V) → (∀𝑥(𝜓𝑦𝑥) ↔ ∀𝑥(𝜓𝑦𝑥)))
98pm5.32i 564 . . . 4 ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
10 cnvcnvintabd.x . . . . . . 7 (𝜑 → ∃𝑥𝜓)
11 pm5.5 350 . . . . . . 7 (∃𝑥𝜓 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1210, 11syl 17 . . . . . 6 (𝜑 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1312bicomd 213 . . . . 5 (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓𝑦 ∈ (V × V))))
1413anbi1d 615 . . . 4 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
159, 14syl5bb 272 . . 3 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
16 elcnvcnvintab 38414 . . 3 (𝑦 {𝑥𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
17 vex 3354 . . . 4 𝑦 ∈ V
18 vex 3354 . . . . . 6 𝑥 ∈ V
19 cnvexg 7259 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
20 cnvexg 7259 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
2118, 19, 20mp2b 10 . . . . 5 𝑥 ∈ V
22 relcnv 5644 . . . . . 6 Rel 𝑥
23 df-rel 5256 . . . . . 6 (Rel 𝑥𝑥 ⊆ (V × V))
2422, 23mpbi 220 . . . . 5 𝑥 ⊆ (V × V)
2521, 24elmapintrab 38408 . . . 4 (𝑦 ∈ V → (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
2617, 25ax-mp 5 . . 3 (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥)))
2715, 16, 263bitr4g 303 . 2 (𝜑 → (𝑦 {𝑥𝜓} ↔ 𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)}))
2827eqrdv 2769 1 (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  {cab 2757  {crab 3065  Vcvv 3351  cin 3722  wss 3723  𝒫 cpw 4297   cint 4611   × cxp 5247  ccnv 5248  Rel wrel 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator