MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvOLD Structured version   Visualization version   GIF version

Theorem cnvcnvOLD 5622
Description: Obsolete proof of cnvcnv 5621 as of 26-Nov-2021. (Contributed by NM, 8-Dec-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnvcnvOLD 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnvOLD
StepHypRef Expression
1 relcnv 5538 . . . . 5 Rel 𝐴
2 df-rel 5150 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 220 . . . 4 𝐴 ⊆ (V × V)
4 relxp 5160 . . . . 5 Rel (V × V)
5 dfrel2 5618 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 220 . . . 4 (V × V) = (V × V)
73, 6sseqtr4i 3671 . . 3 𝐴(V × V)
8 dfss 3622 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 220 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5575 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5575 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 5329 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3867 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 5150 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 221 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5618 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 220 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2675 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2679 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  Vcvv 3231  cin 3606  wss 3607   × cxp 5141  ccnv 5142  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator