![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnvbraval | Structured version Visualization version GIF version |
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 29051, this very important theorem not only justifies the Dirac bra-ket notation, but allows us to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvbraval | ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 29095 | . . . . . . . . . 10 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | |
2 | f1ocnvfv 6574 | . . . . . . . . . 10 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) | |
3 | 1, 2 | mpan 706 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) |
4 | 3 | imp 444 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (◡bra‘𝑇) = 𝑦) |
5 | 4 | oveq2d 6706 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
6 | 5 | adantll 750 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
7 | braval 28931 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) | |
8 | 7 | ancoms 468 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
9 | 8 | adantll 750 | . . . . . . 7 ⊢ (((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
11 | fveq1 6228 | . . . . . . 7 ⊢ ((bra‘𝑦) = 𝑇 → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) |
13 | 6, 10, 12 | 3eqtr2rd 2692 | . . . . 5 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
14 | rnbra 29094 | . . . . . . . 8 ⊢ ran bra = (LinFn ∩ ContFn) | |
15 | 14 | eleq2i 2722 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ 𝑇 ∈ (LinFn ∩ ContFn)) |
16 | f1of 6175 | . . . . . . . . . 10 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) → bra: ℋ⟶(LinFn ∩ ContFn)) | |
17 | 1, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ bra: ℋ⟶(LinFn ∩ ContFn) |
18 | ffn 6083 | . . . . . . . . 9 ⊢ (bra: ℋ⟶(LinFn ∩ ContFn) → bra Fn ℋ) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ bra Fn ℋ |
20 | fvelrnb 6282 | . . . . . . . 8 ⊢ (bra Fn ℋ → (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
22 | 15, 21 | sylbb1 227 | . . . . . 6 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
24 | 13, 23 | r19.29a 3107 | . . . 4 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
25 | 24 | ralrimiva 2995 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
26 | f1ocnvdm 6580 | . . . . 5 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘𝑇) ∈ ℋ) | |
27 | 1, 26 | mpan 706 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) |
28 | riesz4 29051 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | |
29 | oveq2 6698 | . . . . . . 7 ⊢ (𝑦 = (◡bra‘𝑇) → (𝑥 ·ih 𝑦) = (𝑥 ·ih (◡bra‘𝑇))) | |
30 | 29 | eqeq2d 2661 | . . . . . 6 ⊢ (𝑦 = (◡bra‘𝑇) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
31 | 30 | ralbidv 3015 | . . . . 5 ⊢ (𝑦 = (◡bra‘𝑇) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
32 | 31 | riota2 6673 | . . . 4 ⊢ (((◡bra‘𝑇) ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
33 | 27, 28, 32 | syl2anc 694 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
34 | 25, 33 | mpbid 222 | . 2 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇)) |
35 | 34 | eqcomd 2657 | 1 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∃!wreu 2943 ∩ cin 3606 ◡ccnv 5142 ran crn 5144 Fn wfn 5921 ⟶wf 5922 –1-1-onto→wf1o 5925 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 ℋchil 27904 ·ih csp 27907 ContFnccnfn 27938 LinFnclf 27939 bracbr 27941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvmulass 27992 ax-hvdistr1 27993 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 ax-hcompl 28187 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-cn 21079 df-cnp 21080 df-lm 21081 df-t1 21166 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cfil 23099 df-cau 23100 df-cmet 23101 df-grpo 27475 df-gid 27476 df-ginv 27477 df-gdiv 27478 df-ablo 27527 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-vs 27582 df-nmcv 27583 df-ims 27584 df-dip 27684 df-ssp 27705 df-ph 27796 df-cbn 27847 df-hnorm 27953 df-hba 27954 df-hvsub 27956 df-hlim 27957 df-hcau 27958 df-sh 28192 df-ch 28206 df-oc 28237 df-ch0 28238 df-nmfn 28832 df-nlfn 28833 df-cnfn 28834 df-lnfn 28835 df-bra 28837 |
This theorem is referenced by: bracnlnval 29101 |
Copyright terms: Public domain | W3C validator |