![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnv0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnv0 5681 as of 25-Oct-2021. (Contributed by NM, 6-Apr-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnv0OLD | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5649 | . 2 ⊢ Rel ◡∅ | |
2 | rel0 5387 | . 2 ⊢ Rel ∅ | |
3 | vex 3331 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 3331 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 5447 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
6 | noel 4050 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
7 | noel 4050 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
8 | 6, 7 | 2false 364 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
9 | 5, 8 | bitr4i 267 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
10 | 1, 2, 9 | eqrelriiv 5359 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 ∈ wcel 2127 ∅c0 4046 〈cop 4315 ◡ccnv 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 df-rel 5261 df-cnv 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |