![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrecd | Structured version Visualization version GIF version |
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cntzrecd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzrecd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
cntzrecd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
cntzrecd.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Ref | Expression |
---|---|
cntzrecd | ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzrecd.s | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
2 | cntzrecd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | cntzrecd.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | eqid 2651 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 4 | subgss 17642 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
6 | 4 | subgss 17642 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | cntzrecd.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
8 | 4, 7 | cntzrec 17812 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
9 | 5, 6, 8 | syl2an 493 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
10 | 2, 3, 9 | syl2anc 694 | . 2 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
11 | 1, 10 | mpbid 222 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ‘cfv 5926 Basecbs 15904 SubGrpcsubg 17635 Cntzccntz 17794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-subg 17638 df-cntz 17796 |
This theorem is referenced by: subgdisj2 18151 pj2f 18157 pj1id 18158 dprdcntz2 18483 dmdprdsplit2lem 18490 dmdprdsplit2 18491 |
Copyright terms: Public domain | W3C validator |