MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm Structured version   Visualization version   GIF version

Theorem cntzmhm 17992
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))

Proof of Theorem cntzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2761 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2761 . . . 4 (Base‘𝐻) = (Base‘𝐻)
31, 2mhmf 17562 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
51, 4cntzssv 17982 . . . 4 (𝑍𝑆) ⊆ (Base‘𝐺)
65sseli 3741 . . 3 (𝐴 ∈ (𝑍𝑆) → 𝐴 ∈ (Base‘𝐺))
7 ffvelrn 6522 . . 3 ((𝐹:(Base‘𝐺)⟶(Base‘𝐻) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹𝐴) ∈ (Base‘𝐻))
83, 6, 7syl2an 495 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (Base‘𝐻))
9 eqid 2761 . . . . . . . 8 (+g𝐺) = (+g𝐺)
109, 4cntzi 17983 . . . . . . 7 ((𝐴 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1110adantll 752 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1211fveq2d 6358 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = (𝐹‘(𝑥(+g𝐺)𝐴)))
13 simpll 807 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐹 ∈ (𝐺 MndHom 𝐻))
146ad2antlr 765 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
151, 4cntzrcl 17981 . . . . . . . . 9 (𝐴 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1615adantl 473 . . . . . . . 8 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1716simprd 482 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1817sselda 3745 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2761 . . . . . . 7 (+g𝐻) = (+g𝐻)
201, 9, 19mhmlin 17564 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
2113, 14, 18, 20syl3anc 1477 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
221, 9, 19mhmlin 17564 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2313, 18, 14, 22syl3anc 1477 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2412, 21, 233eqtr3d 2803 . . . 4 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2524ralrimiva 3105 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
263adantr 472 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
27 ffn 6207 . . . . 5 (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → 𝐹 Fn (Base‘𝐺))
2826, 27syl 17 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹 Fn (Base‘𝐺))
29 oveq2 6823 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐹𝐴)(+g𝐻)𝑦) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
30 oveq1 6822 . . . . . 6 (𝑦 = (𝐹𝑥) → (𝑦(+g𝐻)(𝐹𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
3129, 30eqeq12d 2776 . . . . 5 (𝑦 = (𝐹𝑥) → (((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3231ralima 6663 . . . 4 ((𝐹 Fn (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3328, 17, 32syl2anc 696 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3425, 33mpbird 247 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))
35 imassrn 5636 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
36 frn 6215 . . . . 5 (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → ran 𝐹 ⊆ (Base‘𝐻))
3726, 36syl 17 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ran 𝐹 ⊆ (Base‘𝐻))
3835, 37syl5ss 3756 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝑆) ⊆ (Base‘𝐻))
39 cntzmhm.y . . . 4 𝑌 = (Cntz‘𝐻)
402, 19, 39elcntz 17976 . . 3 ((𝐹𝑆) ⊆ (Base‘𝐻) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
4138, 40syl 17 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
428, 34, 41mpbir2and 995 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  Vcvv 3341  wss 3716  ran crn 5268  cima 5270   Fn wfn 6045  wf 6046  cfv 6050  (class class class)co 6815  Basecbs 16080  +gcplusg 16164   MndHom cmhm 17555  Cntzccntz 17969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-map 8028  df-mhm 17557  df-cntz 17971
This theorem is referenced by:  cntzmhm2  17993
  Copyright terms: Public domain W3C validator