![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntziinsn | Structured version Visualization version GIF version |
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntziinsn | ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzrec.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2651 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | cntzrec.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 17800 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
5 | ssel2 3631 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
6 | 1, 2, 3 | cntzsnval 17803 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑍‘{𝑥}) = {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑍‘{𝑥}) = {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
8 | 7 | iineq2dv 4575 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}) = ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
9 | 8 | ineq2d 3847 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥})) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)})) |
10 | riinrab 4628 | . . 3 ⊢ (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)} | |
11 | 9, 10 | syl6eq 2701 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥})) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
12 | 4, 11 | eqtr4d 2688 | 1 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ∩ cin 3606 ⊆ wss 3607 {csn 4210 ∩ ciin 4553 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Cntzccntz 17794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-cntz 17796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |