![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzfval | Structured version Visualization version GIF version |
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzfval | ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.z | . 2 ⊢ 𝑍 = (Cntz‘𝑀) | |
2 | elex 3361 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
3 | fveq2 6332 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
4 | cntzfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
5 | 3, 4 | syl6eqr 2822 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
6 | 5 | pweqd 4300 | . . . . 5 ⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵) |
7 | fveq2 6332 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
8 | cntzfval.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑀) | |
9 | 7, 8 | syl6eqr 2822 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = + ) |
10 | 9 | oveqd 6809 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥 + 𝑦)) |
11 | 9 | oveqd 6809 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑦(+g‘𝑚)𝑥) = (𝑦 + 𝑥)) |
12 | 10, 11 | eqeq12d 2785 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
13 | 12 | ralbidv 3134 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
14 | 5, 13 | rabeqbidv 3344 | . . . . 5 ⊢ (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
15 | 6, 14 | mpteq12dv 4865 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
16 | df-cntz 17956 | . . . 4 ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | |
17 | fvex 6342 | . . . . . . 7 ⊢ (Base‘𝑀) ∈ V | |
18 | 4, 17 | eqeltri 2845 | . . . . . 6 ⊢ 𝐵 ∈ V |
19 | 18 | pwex 4976 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
20 | 19 | mptex 6629 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V |
21 | 15, 16, 20 | fvmpt 6424 | . . 3 ⊢ (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
23 | 1, 22 | syl5eq 2816 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∀wral 3060 {crab 3064 Vcvv 3349 𝒫 cpw 4295 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 Cntzccntz 17954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-cntz 17956 |
This theorem is referenced by: cntzval 17960 cntzrcl 17966 |
Copyright terms: Public domain | W3C validator |