![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzcmn | Structured version Visualization version GIF version |
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cntzcmn.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
3 | 1, 2 | cntzssv 17968 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
5 | simpl1 1227 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ CMnd) | |
6 | simpl3 1231 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
7 | simp2 1131 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑆 ⊆ 𝐵) | |
8 | 7 | sselda 3752 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
9 | eqid 2771 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | 1, 9 | cmncom 18416 | . . . . . . 7 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
11 | 5, 6, 8, 10 | syl3anc 1476 | . . . . . 6 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
12 | 11 | ralrimiva 3115 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
13 | 1, 9, 2 | cntzel 17963 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | 13 | 3adant1 1124 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
15 | 12, 14 | mpbird 247 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑍‘𝑆)) |
16 | 15 | 3expia 1114 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝑍‘𝑆))) |
17 | 16 | ssrdv 3758 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝐵 ⊆ (𝑍‘𝑆)) |
18 | 4, 17 | eqssd 3769 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 Cntzccntz 17955 CMndccmn 18400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-cntz 17957 df-cmn 18402 |
This theorem is referenced by: cntzcmnss 18453 cntzcmnf 18455 ablcntzd 18467 gsumadd 18530 |
Copyright terms: Public domain | W3C validator |