![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrval | Structured version Visualization version GIF version |
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntrval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntrval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntrval | ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6344 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀)) | |
2 | cntrval.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | syl6eqr 2804 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍) |
4 | fveq2 6344 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
5 | cntrval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | syl6eqr 2804 | . . . . 5 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
7 | 3, 6 | fveq12d 6350 | . . . 4 ⊢ (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍‘𝐵)) |
8 | df-cntr 17943 | . . . 4 ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | |
9 | fvex 6354 | . . . 4 ⊢ (𝑍‘𝐵) ∈ V | |
10 | 7, 8, 9 | fvmpt 6436 | . . 3 ⊢ (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍‘𝐵)) |
11 | 10 | eqcomd 2758 | . 2 ⊢ (𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
12 | 0fv 6380 | . . 3 ⊢ (∅‘𝐵) = ∅ | |
13 | fvprc 6338 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
14 | 2, 13 | syl5eq 2798 | . . . 4 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
15 | 14 | fveq1d 6346 | . . 3 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (∅‘𝐵)) |
16 | fvprc 6338 | . . 3 ⊢ (¬ 𝑀 ∈ V → (Cntr‘𝑀) = ∅) | |
17 | 12, 15, 16 | 3eqtr4a 2812 | . 2 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝐵) = (Cntr‘𝑀)) |
18 | 11, 17 | pm2.61i 176 | 1 ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∅c0 4050 ‘cfv 6041 Basecbs 16051 Cntzccntz 17940 Cntrccntr 17941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-cntr 17943 |
This theorem is referenced by: cntri 17955 cntrsubgnsg 17965 cntrnsg 17966 oppgcntr 17987 |
Copyright terms: Public domain | W3C validator |