MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntop1 Structured version   Visualization version   GIF version

Theorem cntop1 21167
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)

Proof of Theorem cntop1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . 4 𝐽 = 𝐽
2 eqid 2724 . . . 4 𝐾 = 𝐾
31, 2iscn2 21165 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 478 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simpld 477 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2103  wral 3014   cuni 4544  ccnv 5217  cima 5221  wf 5997  (class class class)co 6765  Topctop 20821   Cn ccn 21151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-map 7976  df-top 20822  df-topon 20839  df-cn 21154
This theorem is referenced by:  cnco  21193  cnclima  21195  cnntri  21198  cnclsi  21199  cnss2  21204  cncnpi  21205  cncnp2  21208  cnrest  21212  cnrest2  21213  cnrest2r  21214  lmcn  21232  cnt0  21273  cnt1  21277  cnhaus  21281  kgen2cn  21485  txcnmpt  21550  uptx  21551  txcn  21552  xkoco1cn  21583  xkoco2cn  21584  xkococnlem  21585  cnmpt21f  21598  qtopss  21641  qtopomap  21644  qtopcmap  21645  hmeofval  21684  hmeof1o  21690  hmeores  21697  hmphen  21711  txhmeo  21729  htpyco2  22900  hauseqcn  30171  cnmbfm  30555  hausgraph  38209  rfcnpre1  39594  fcnre  39600
  Copyright terms: Public domain W3C validator