MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 19929
Description: There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})

Proof of Theorem cnsubrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4050 . . . 4 (𝑅 ⊆ ℝ ↔ (𝑅 ∖ ℝ) = ∅)
2 simpr 479 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 ⊆ ℝ)
3 simplr 809 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → ℝ ⊆ 𝑅)
42, 3eqssd 3726 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 = ℝ)
54orcd 406 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
61, 5sylan2br 494 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) = ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7 n0 4039 . . . 4 ((𝑅 ∖ ℝ) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ))
8 simpll 807 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ∈ (SubRing‘ℂfld))
9 cnfldbas 19873 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
109subrgss 18904 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ⊆ ℂ)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ⊆ ℂ)
12 replim 13976 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
1312ad2antll 767 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14 simpll 807 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑅 ∈ (SubRing‘ℂfld))
15 simplr 809 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ℝ ⊆ 𝑅)
16 recl 13970 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (ℜ‘𝑦) ∈ ℝ)
1716ad2antll 767 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ ℝ)
1815, 17sseldd 3710 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ 𝑅)
19 ax-icn 10108 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ ℂ)
21 eldifi 3840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑅 ∖ ℝ) → 𝑥𝑅)
2221adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥𝑅)
2311, 22sseldd 3710 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 ∈ ℂ)
24 imcl 13971 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℝ)
2625recnd 10181 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℂ)
27 eldifn 3841 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑅 ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
2827adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ¬ 𝑥 ∈ ℝ)
29 reim0b 13979 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
3029necon3bbid 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3228, 31mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ≠ 0)
3320, 26, 32divcan4d 10920 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = i)
34 mulcl 10133 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (ℑ‘𝑥) ∈ ℂ) → (i · (ℑ‘𝑥)) ∈ ℂ)
3519, 26, 34sylancr 698 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ ℂ)
3635, 26, 32divrecd 10917 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3733, 36eqtr3d 2760 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3823recld 14054 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℝ)
3938recnd 10181 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℂ)
4023, 39negsubd 10511 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (𝑥 − (ℜ‘𝑥)))
41 replim 13976 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4342oveq1d 6780 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 − (ℜ‘𝑥)) = (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)))
4439, 35pncan2d 10507 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
4540, 43, 443eqtrd 2762 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
46 simplr 809 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℝ ⊆ 𝑅)
4738renegcld 10570 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ ℝ)
4846, 47sseldd 3710 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ 𝑅)
49 cnfldadd 19874 . . . . . . . . . . . . . . . . . . . 20 + = (+g‘ℂfld)
5049subrgacl 18914 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅 ∧ -(ℜ‘𝑥) ∈ 𝑅) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1439 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
5245, 51eqeltrrd 2804 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ 𝑅)
5325, 32rereccld 10965 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ ℝ)
5446, 53sseldd 3710 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ 𝑅)
55 cnfldmul 19875 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
5655subrgmcl 18915 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (i · (ℑ‘𝑥)) ∈ 𝑅 ∧ (1 / (ℑ‘𝑥)) ∈ 𝑅) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1439 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
5837, 57eqeltrd 2803 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ 𝑅)
5958adantrr 755 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → i ∈ 𝑅)
60 imcl 13971 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (ℑ‘𝑦) ∈ ℝ)
6160ad2antll 767 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ ℝ)
6215, 61sseldd 3710 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ 𝑅)
6355subrgmcl 18915 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝑅 ∧ (ℑ‘𝑦) ∈ 𝑅) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1439 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6549subrgacl 18914 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℜ‘𝑦) ∈ 𝑅 ∧ (i · (ℑ‘𝑦)) ∈ 𝑅) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1439 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6713, 66eqeltrd 2803 . . . . . . . . . . 11 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦𝑅)
6867expr 644 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑦 ∈ ℂ → 𝑦𝑅))
6968ssrdv 3715 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℂ ⊆ 𝑅)
7011, 69eqssd 3726 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 = ℂ)
7170olcd 407 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7271ex 449 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7372exlimdv 1974 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7473imp 444 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
757, 74sylan2b 493 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) ≠ ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
766, 75pm2.61dane 2983 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
77 elprg 4304 . . 3 (𝑅 ∈ (SubRing‘ℂfld) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7877adantr 472 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7976, 78mpbird 247 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1596  wex 1817  wcel 2103  wne 2896  cdif 3677  wss 3680  c0 4023  {cpr 4287  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050  ici 10051   + caddc 10052   · cmul 10054  cmin 10379  -cneg 10380   / cdiv 10797  cre 13957  cim 13958  SubRingcsubrg 18899  fldccnfld 19869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-fz 12441  df-cj 13959  df-re 13960  df-im 13961  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-subg 17713  df-mgp 18611  df-ring 18670  df-subrg 18901  df-cnfld 19870
This theorem is referenced by:  cncdrg  23276
  Copyright terms: Public domain W3C validator